找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Science – ICCS 2020; 20th International C Valeria V. Krzhizhanovskaya,Gábor Závodszky,Jo?o T Conference proceedings 2020 Spri

[復(fù)制鏈接]
查看: 30875|回復(fù): 56
樓主
發(fā)表于 2025-3-21 18:56:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computational Science – ICCS 2020
副標(biāo)題20th International C
編輯Valeria V. Krzhizhanovskaya,Gábor Závodszky,Jo?o T
視頻videohttp://file.papertrans.cn/234/233084/233084.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computational Science – ICCS 2020; 20th International C Valeria V. Krzhizhanovskaya,Gábor Závodszky,Jo?o T Conference proceedings 2020 Spri
描述.The seven-volume set LNCS 12137, 12138, 12139, 12140, 12141, 12142, and 12143 constitutes the proceedings of the 20th International Conference on Computational Science, ICCS 2020, held in Amsterdam, The Netherlands, in June 2020.*..The total of 101 papers and 248 workshop papers presented in this book set were carefully reviewed and selected from 719 submissions (230 submissions to the main track and 489 submissions to the workshops). The papers were organized in topical sections named:.Part I: ICCS Main Track..Part II: ICCS Main Track..Part III: Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Agent-Based Simulations, Adaptive Algorithms and Solvers; Applications of Computational Methods in Artificial Intelligence and Machine Learning; Biomedical and Bioinformatics Challenges for Computer Science.Part IV: Classifier Learning from Difficult Data; Complex Social Systems through the Lens of Computational Science; Computational Health; Computational Methods for Emerging Problems in (Dis-)Information Analysis.Part V: Computational Optimization, Modelling and Simulation; Computational Science in IoT and Smart Systems; Computer Graphics, Image Proc
出版日期Conference proceedings 2020
關(guān)鍵詞artificial intelligence; computer networks; genetic algorithms; image processing; machine learning; mathe
版次1
doihttps://doi.org/10.1007/978-3-030-50433-5
isbn_softcover978-3-030-50432-8
isbn_ebook978-3-030-50433-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Computational Science – ICCS 2020影響因子(影響力)




書目名稱Computational Science – ICCS 2020影響因子(影響力)學(xué)科排名




書目名稱Computational Science – ICCS 2020網(wǎng)絡(luò)公開度




書目名稱Computational Science – ICCS 2020網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Science – ICCS 2020被引頻次




書目名稱Computational Science – ICCS 2020被引頻次學(xué)科排名




書目名稱Computational Science – ICCS 2020年度引用




書目名稱Computational Science – ICCS 2020年度引用學(xué)科排名




書目名稱Computational Science – ICCS 2020讀者反饋




書目名稱Computational Science – ICCS 2020讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:58:19 | 只看該作者
Amadou Thierno Diallo,Ahmet Suayb Gundogdutral step of the Data Assimilation approach and, in general, in several data analysis procedures. In particular, we propose a parallel algorithm, based on the use of Recursive Filters to approximate the Gaussian convolution in a very fast way. Tests and experiments confirm the efficiency of the proposed implementation.
板凳
發(fā)表于 2025-3-22 03:20:27 | 只看該作者
地板
發(fā)表于 2025-3-22 07:22:11 | 只看該作者
Accelerated Gaussian Convolution in a Data Assimilation Scenariotral step of the Data Assimilation approach and, in general, in several data analysis procedures. In particular, we propose a parallel algorithm, based on the use of Recursive Filters to approximate the Gaussian convolution in a very fast way. Tests and experiments confirm the efficiency of the proposed implementation.
5#
發(fā)表于 2025-3-22 10:11:00 | 只看該作者
6#
發(fā)表于 2025-3-22 16:50:01 | 只看該作者
7#
發(fā)表于 2025-3-22 17:17:48 | 只看該作者
8#
發(fā)表于 2025-3-22 23:31:02 | 只看該作者
9#
發(fā)表于 2025-3-23 04:17:51 | 只看該作者
10#
發(fā)表于 2025-3-23 09:32:10 | 只看該作者
https://doi.org/10.1007/978-1-4020-6598-9eriodic monitoring of the fire spread prediction error . estimated by the normalized symmetric difference for each simulation run. Our new strategy avoid wasting too much computing time running unfit individuals thanks to an early adaptive evaluation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 13:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉节县| 京山县| 银川市| 临汾市| 永城市| 高陵县| 株洲市| 平安县| 肇庆市| 大兴区| 章丘市| 永城市| 玉溪市| 北京市| 惠东县| 安多县| 棋牌| 新昌县| 邛崃市| 美姑县| 察哈| 睢宁县| 聊城市| 钟山县| 息烽县| 伊吾县| 墨江| 庆安县| 松滋市| 宕昌县| 达尔| 中山市| 漯河市| 高安市| 儋州市| 大足县| 修文县| 长泰县| 公安县| 苗栗市| 深泽县|