找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Science — ICCS 2004; 4th International Co Marian Bubak,Geert Dick Albada,Jack Dongarra Conference proceedings 2004 Springer-V

[復(fù)制鏈接]
樓主: 回憶錄
41#
發(fā)表于 2025-3-28 18:18:28 | 只看該作者
42#
發(fā)表于 2025-3-28 20:39:58 | 只看該作者
43#
發(fā)表于 2025-3-29 00:59:36 | 只看該作者
44#
發(fā)表于 2025-3-29 07:08:42 | 只看該作者
45#
發(fā)表于 2025-3-29 10:22:12 | 只看該作者
46#
發(fā)表于 2025-3-29 13:44:20 | 只看該作者
LodStrips: Level of Detail Stripsessed to the multiresolution model representation by means of triangle meshes. Nowadays, models that exploit connectivity have been developed, in this paper a multiresolution model that uses triangle strips as primitive is presented. This primitive is used both in the data structure and in the rende
47#
發(fā)表于 2025-3-29 15:34:50 | 只看該作者
48#
發(fā)表于 2025-3-29 20:03:53 | 只看該作者
Using Constraints in Delaunay and Greedy Triangulation for Contour Lines Improvementused, some triangles can be a source of a strange behaviour of the contour lines. In this paper, we show what problems can appear in contour lines when Delaunay or greedy triangulations are used and how the contour lines can be improved using constraints in the triangulation. We improved contour lin
49#
發(fā)表于 2025-3-30 02:59:36 | 只看該作者
50#
發(fā)表于 2025-3-30 07:37:44 | 只看該作者
GA and CHC. Two Evolutionary Algorithms to Solve the Root Identification Problem in Geometric Constre user is only interested in one instance such that, besides fulfilling the geometric constraints, exhibits some additional properties..Selecting a solution instance amounts to selecting a given root every time the geometric constraint solver needs to compute the zeros of a multi valuated function.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连平县| 军事| 晋江市| 平昌县| 宝丰县| 磴口县| 玉田县| 通渭县| 淮南市| 襄垣县| 遵化市| 娄底市| 洪洞县| 沭阳县| 泾源县| 嵊泗县| 柏乡县| 仁化县| 廊坊市| 湘乡市| 呼玛县| 高平市| 扬州市| 五峰| 介休市| 灯塔市| 临西县| 宜都市| 伊宁市| 满城县| 陵川县| 左贡县| 阳泉市| 庄浪县| 九寨沟县| 沅陵县| 于都县| 峨山| 广元市| 西平县| 罗城|