找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Reconstruction of Missing Data in Biological Research; Feng Bao Book 2021 Tsinghua University Press 2021 Machine Learning.Bi

[復(fù)制鏈接]
查看: 29732|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:04:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computational Reconstruction of Missing Data in Biological Research
編輯Feng Bao
視頻videohttp://file.papertrans.cn/233/232935/232935.mp4
叢書名稱Springer Theses
圖書封面Titlebook: Computational Reconstruction of Missing Data in Biological Research;  Feng Bao Book 2021 Tsinghua University Press 2021 Machine Learning.Bi
描述The emerging biotechnologies have significantly advanced the study of biological mechanisms. However, biological data usually contain a great amount of missing information, e.g. missing features, missing labels or missing samples, which greatly limits the extensive usage of the data. In this book, we introduce different types of biological data missing scenarios and propose machine learning models to improve the data analysis, including deep recurrent neural network recovery for feature missings, robust information theoretic learning for label missings and structure-aware rebalancing for minor sample missings. Models in the book cover the fields of imbalance learning, deep learning, recurrent neural network and statistical inference, providing a wide range of references of the integration between artificial intelligence and biology. With simulated and biological datasets, we apply approaches to a variety of biological tasks, including single-cell characterization, genome-wide association studies, medical image segmentations, and quantify the performances in a number of successful metrics..The outline of this book is as follows. In Chapter 2, we introduce the statistical recovery of
出版日期Book 2021
關(guān)鍵詞Machine Learning; Biological data analysis; Data imputation; Imbalance learning; Single-cell analysis
版次1
doihttps://doi.org/10.1007/978-981-16-3064-4
isbn_softcover978-981-16-3063-7
isbn_ebook978-981-16-3064-4Series ISSN 2190-5053 Series E-ISSN 2190-5061
issn_series 2190-5053
copyrightTsinghua University Press 2021
The information of publication is updating

書目名稱Computational Reconstruction of Missing Data in Biological Research影響因子(影響力)




書目名稱Computational Reconstruction of Missing Data in Biological Research影響因子(影響力)學(xué)科排名




書目名稱Computational Reconstruction of Missing Data in Biological Research網(wǎng)絡(luò)公開度




書目名稱Computational Reconstruction of Missing Data in Biological Research網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Reconstruction of Missing Data in Biological Research被引頻次




書目名稱Computational Reconstruction of Missing Data in Biological Research被引頻次學(xué)科排名




書目名稱Computational Reconstruction of Missing Data in Biological Research年度引用




書目名稱Computational Reconstruction of Missing Data in Biological Research年度引用學(xué)科排名




書目名稱Computational Reconstruction of Missing Data in Biological Research讀者反饋




書目名稱Computational Reconstruction of Missing Data in Biological Research讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:47:30 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:51:33 | 只看該作者
地板
發(fā)表于 2025-3-22 04:48:33 | 只看該作者
5#
發(fā)表于 2025-3-22 11:15:25 | 只看該作者
Computational Reconstruction of Missing Data in Biological Research
6#
發(fā)表于 2025-3-22 15:57:23 | 只看該作者
7#
發(fā)表于 2025-3-22 17:16:32 | 只看該作者
Fast Computational Recovery of Missing Features for Large-scale Biological Data, focuses on missing gene features in single-cell transcriptomics data. In the rapidly development of single-cell sequencing, the latest technological advances have made it possible to measure the intrinsic activity of single cells on a large scale, and enable to analyze the composition of cells with
8#
發(fā)表于 2025-3-23 01:12:27 | 只看該作者
9#
發(fā)表于 2025-3-23 02:11:02 | 只看該作者
10#
發(fā)表于 2025-3-23 07:42:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 01:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三台县| 鄄城县| 阜南县| 九龙城区| 武威市| 徐水县| 仪征市| 手游| 营口市| 黄平县| 花垣县| 乐业县| 农安县| 双流县| 兴化市| 攀枝花市| 繁昌县| 牡丹江市| 满洲里市| 昌都县| 体育| 枞阳县| 多伦县| 阜南县| 洪江市| 彭水| 稷山县| 岑巩县| 江北区| 栾城县| 信丰县| 乐昌市| 获嘉县| 若尔盖县| 汽车| 西畴县| 镇沅| 清水河县| 中超| 绵阳市| 郑州市|