找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Probability; Algorithms and Appli John H. Drew,Diane L. Evans,Lawrence M. Leemis Book 2017Latest edition Springer Internation

[復(fù)制鏈接]
樓主: 適婚女孩
21#
發(fā)表于 2025-3-25 03:21:32 | 只看該作者
22#
發(fā)表于 2025-3-25 07:42:58 | 只看該作者
23#
發(fā)表于 2025-3-25 14:24:53 | 只看該作者
24#
發(fā)表于 2025-3-25 16:50:25 | 只看該作者
25#
發(fā)表于 2025-3-25 22:27:12 | 只看該作者
Bayesian ApplicationsThis chapter considers Bayesian applications of APPL. Section?14.1 introduces Bayesian statistics and motivates the use of a computer algebra system to derive posterior distributions. Section?14.2 develops algorithms in the case of a single unknown parameter. Section?14.3 develops algorithms in the case of multiple unknown parameters.
26#
發(fā)表于 2025-3-26 03:37:05 | 只看該作者
Other ApplicationsThis chapter contains miscellaneous computational probability applications. Section?. concerns algorithms for calculating the probability distribution of the longest path of a series-parallel stochastic activity network with continuous activity durations.
27#
發(fā)表于 2025-3-26 05:30:48 | 只看該作者
Data Structures and Simple Algorithmsy are defined with a somewhat simpler data structure than that for discrete random variables. The development described here gives a probabilist the ability to automate the instantiation and processing of continuous random variables—key elements of computational probability.
28#
發(fā)表于 2025-3-26 09:06:36 | 只看該作者
Transformations of Random Variablesheorem from Casella and Berger [16] for many–to–1 transformations, we consider more general univariate transformations. Specifically, the transformation can range from 1–to–1 to many–to–1 on various subsets of the support of the random variable of interest. We also present an implementation of the theorem in APPL and present four examples.
29#
發(fā)表于 2025-3-26 14:47:07 | 只看該作者
Data Structures and Simple Algorithmsdiscrete random variables. The first section will show that the nature of the support of discrete random variables makes the data structures required much more complicated than for continuous random variables.
30#
發(fā)表于 2025-3-26 17:03:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
驻马店市| 紫阳县| 噶尔县| 滕州市| 宁陵县| 永嘉县| 应城市| 大悟县| 龙山县| 西峡县| 修文县| 分宜县| 滦平县| 迁西县| 南木林县| 黄石市| 南木林县| 正宁县| 利川市| 东兰县| 抚顺市| 巨鹿县| 布尔津县| 资中县| 康平县| 锦屏县| 新民市| 临安市| 壤塘县| 乌拉特后旗| 德安县| 松阳县| 崇左市| 新兴县| 康定县| 三亚市| 维西| 开封市| 若尔盖县| 聂荣县| 西畴县|