找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics; Alexander Gelfgat Book 2019 Springer International Publishing

[復(fù)制鏈接]
樓主: morphology
21#
發(fā)表于 2025-3-25 05:21:33 | 只看該作者
Numerical Bifurcation Analysis of Marine Ice Sheet Modelsect in this contribution is that, for the first time, numerical bifurcation analysis is applied to a two-dimensional marine ice sheet model with a dynamic grounding line. In this model, we find Hopf bifurcations with an oscillation period of about 100 kyr which may be relevant to glacial cycles.
22#
發(fā)表于 2025-3-25 09:08:29 | 只看該作者
1871-3033 ments in numerical techniques for computational modelling of fluid instabilities and related bifurcation structures, as well as providing comprehensive reviews of recently solved challenging problems in the field.??.978-3-030-08260-4978-3-319-91494-7Series ISSN 1871-3033 Series E-ISSN 2543-0203
23#
發(fā)表于 2025-3-25 13:41:55 | 只看該作者
24#
發(fā)表于 2025-3-25 15:51:43 | 只看該作者
25#
發(fā)表于 2025-3-25 23:10:40 | 只看該作者
The General Theory of Z-Efficiency,tion to chaos in a fully confined cubical cavity. In addition, the streamline topology of two-dimensional time-dependent and of steady three-dimensional flows are covered, as well as turbulent flow in a square and in a fully confined lid-driven cube. Finally, an overview on various extensions of the lid-driven cavity is given.
26#
發(fā)表于 2025-3-26 03:59:29 | 只看該作者
On Acceleration of Krylov-Subspace-Based Newton and Arnoldi Iterations for Incompressible CFD: Replabasis satisfying all boundary conditions. The approach, including the two proposed techniques, is illustrated on the solution of the linear stability problem for laterally heated square and cubic cavities.
27#
發(fā)表于 2025-3-26 05:22:07 | 只看該作者
The Lid-Driven Cavitytion to chaos in a fully confined cubical cavity. In addition, the streamline topology of two-dimensional time-dependent and of steady three-dimensional flows are covered, as well as turbulent flow in a square and in a fully confined lid-driven cube. Finally, an overview on various extensions of the lid-driven cavity is given.
28#
發(fā)表于 2025-3-26 10:45:41 | 只看該作者
29#
發(fā)表于 2025-3-26 12:51:14 | 只看該作者
Super Mad at Everything All the Times occurring in such flows are often of unique and counter-intuitive nature due to the action of the magnetic field, which suppresses conventional turbulence and gives preference to two-dimensional instability modes not appearing in more conventional convection systems. Tools of numerical analysis suitable for such flows are discussed.
30#
發(fā)表于 2025-3-26 18:08:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 12:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江西省| 北流市| 长乐市| 兰考县| 定远县| 丰县| 柯坪县| 大埔区| 石屏县| 桦川县| 永康市| 红河县| 乌拉特前旗| 三亚市| 大宁县| 新田县| 安平县| 乌苏市| 嵊州市| 南溪县| 南投县| 德州市| 礼泉县| 翼城县| 睢宁县| 团风县| 凤翔县| 阜新市| 安阳县| 云阳县| 宁河县| 大余县| 紫金县| 独山县| 台中县| 吉木萨尔县| 绍兴县| 大洼县| 依兰县| 青州市| 深圳市|