找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications; 6th International Co Reneta P. Barneva,Vale

[復(fù)制鏈接]
樓主: broach
41#
發(fā)表于 2025-3-28 17:22:33 | 只看該作者
List of symbols and abbreviations,nt strategies for choosing a starting image, and thus we develop variants of the SA method for strip constrained binary tomography. We evaluate the different approaches on images with varying densities of object pixels.
42#
發(fā)表于 2025-3-28 20:33:26 | 只看該作者
List of symbols and abbreviations,a restricted depth data set, depending on the tasks complexity. While the sample size is small, we can conclude that pre-trained DL descriptors are the most descriptive, but not by a statistically significant margin and therefore part-based descriptors are still a viable option for small, but difficult 3D data sets.
43#
發(fā)表于 2025-3-28 22:58:15 | 只看該作者
List of symbols and abbreviations,est the theoretic setup on simulated data by reconstructing phantom images from simulated projections and compare the results to reconstructions from classical X-ray projections. We show that using decomposed projections can lead to better results from 20 times less number of projections than the classical X-Ray tomography.
44#
發(fā)表于 2025-3-29 04:43:26 | 只看該作者
45#
發(fā)表于 2025-3-29 09:17:44 | 只看該作者
46#
發(fā)表于 2025-3-29 15:20:11 | 只看該作者
47#
發(fā)表于 2025-3-29 16:17:44 | 只看該作者
List of symbols and abbreviations,measures namely, sensitivity or true positive rate (TPR), specificity or false negative rate (SPC) and recognition accuracy (ACC). Our experimental outcome for the present setup is two-fold: (i) CC view performs better then MLO for mammogram mass classification, (ii) hard limiter is the best ELM kernel for this problem.
48#
發(fā)表于 2025-3-29 21:44:58 | 只看該作者
49#
發(fā)表于 2025-3-30 01:05:02 | 只看該作者
50#
發(fā)表于 2025-3-30 04:30:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滨州市| 乌拉特中旗| 长武县| 延边| 安阳县| 平远县| 容城县| 乐都县| 鄱阳县| 房山区| 长寿区| 东丰县| 金川县| 山阴县| 竹山县| 和林格尔县| 林口县| 阜新市| 德化县| 昆明市| 陈巴尔虎旗| 鲜城| 石门县| 武强县| 孝义市| 科技| 原平市| 丰城市| 江津市| 仁寿县| 门源| 乌海市| 宝鸡市| 高安市| 衡南县| 察雅县| 丁青县| 邯郸县| 微博| 丰都县| 龙里县|