找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Micromagnetism; Andreas Prohl Textbook 2001 Springer Fachmedien Wiesbaden 2001 Direct Minimization.Micromagnetism.Nematic Li

[復制鏈接]
樓主: Helmet
21#
發(fā)表于 2025-3-25 03:36:22 | 只看該作者
Direct Minimization of existing exchange energy contributions; this effect will be illustrated here for uniaxial materials, for the case of absent exterior fields .: . → ?., and . = 0. All results will be presented for . ? ?., but can be generalized to . ? ?. as well.
22#
發(fā)表于 2025-3-25 09:57:35 | 只看該作者
Sucrose and osmotic dehydration,; electromagnetic coupling effects are incorporated in the (MLLG) equation. Part II closes with the numerical analysis for the nematic liquid crystal problem which also imposes a non-convex constraint onto its solution.
23#
發(fā)表于 2025-3-25 13:52:38 | 只看該作者
24#
發(fā)表于 2025-3-25 19:16:39 | 只看該作者
25#
發(fā)表于 2025-3-25 22:24:24 | 只看該作者
Direct Minimizationtions can by rather costly, due to diverse patterns and scales of minimizing magnetizations. Moreover, they can blurr physical information in the case of existing exchange energy contributions; this effect will be illustrated here for uniaxial materials, for the case of absent exterior fields .: . →
26#
發(fā)表于 2025-3-26 03:26:57 | 只看該作者
27#
發(fā)表于 2025-3-26 06:57:34 | 只看該作者
Relaxed Micromagnetism using Young Measures non-convex, it is not weakly closed in ..(.; ?.), and a solution to (I.4) does not have to exist for uniaxial materials; cf. for instance [71]. An implication is that highly oscillatory minimizing sequences of . do not have weak limits in .. One way to overcome this problem is to convexify the anis
28#
發(fā)表于 2025-3-26 11:38:08 | 只看該作者
Summary and Outlookn magnetic recording, can have an enormous impact on future technologies. Their mathematical theory started with the introduction of the Landau-Lifshitz free energy; a numerical analysis of existing strategies to solve the corresponding minimization problem is presented in part I of this monograph.
29#
發(fā)表于 2025-3-26 15:26:35 | 只看該作者
30#
發(fā)表于 2025-3-26 17:45:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 02:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
台中县| 龙海市| 枞阳县| 河东区| 黑水县| 乐东| 黄大仙区| 潜江市| 昭通市| 自贡市| 林州市| 新兴县| 武汉市| 永新县| 喀什市| 鹤山市| 黄大仙区| 龙胜| 玉溪市| 金门县| 伊川县| 杭锦后旗| 石阡县| 明光市| 玛多县| 孟州市| 教育| 丰镇市| 邻水| 天津市| 顺平县| 云霄县| 无棣县| 米易县| 柯坪县| 赞皇县| 盐城市| 浏阳市| 马尔康县| 松原市| 闽侯县|