找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Micromagnetism; Andreas Prohl Textbook 2001 Springer Fachmedien Wiesbaden 2001 Direct Minimization.Micromagnetism.Nematic Li

[復(fù)制鏈接]
樓主: Helmet
21#
發(fā)表于 2025-3-25 03:36:22 | 只看該作者
Direct Minimization of existing exchange energy contributions; this effect will be illustrated here for uniaxial materials, for the case of absent exterior fields .: . → ?., and . = 0. All results will be presented for . ? ?., but can be generalized to . ? ?. as well.
22#
發(fā)表于 2025-3-25 09:57:35 | 只看該作者
Sucrose and osmotic dehydration,; electromagnetic coupling effects are incorporated in the (MLLG) equation. Part II closes with the numerical analysis for the nematic liquid crystal problem which also imposes a non-convex constraint onto its solution.
23#
發(fā)表于 2025-3-25 13:52:38 | 只看該作者
24#
發(fā)表于 2025-3-25 19:16:39 | 只看該作者
25#
發(fā)表于 2025-3-25 22:24:24 | 只看該作者
Direct Minimizationtions can by rather costly, due to diverse patterns and scales of minimizing magnetizations. Moreover, they can blurr physical information in the case of existing exchange energy contributions; this effect will be illustrated here for uniaxial materials, for the case of absent exterior fields .: . →
26#
發(fā)表于 2025-3-26 03:26:57 | 只看該作者
27#
發(fā)表于 2025-3-26 06:57:34 | 只看該作者
Relaxed Micromagnetism using Young Measures non-convex, it is not weakly closed in ..(.; ?.), and a solution to (I.4) does not have to exist for uniaxial materials; cf. for instance [71]. An implication is that highly oscillatory minimizing sequences of . do not have weak limits in .. One way to overcome this problem is to convexify the anis
28#
發(fā)表于 2025-3-26 11:38:08 | 只看該作者
Summary and Outlookn magnetic recording, can have an enormous impact on future technologies. Their mathematical theory started with the introduction of the Landau-Lifshitz free energy; a numerical analysis of existing strategies to solve the corresponding minimization problem is presented in part I of this monograph.
29#
發(fā)表于 2025-3-26 15:26:35 | 只看該作者
30#
發(fā)表于 2025-3-26 17:45:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 13:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安阳县| 龙泉市| 普陀区| 鄯善县| 佛教| 阿勒泰市| 海安县| 东城区| 区。| 大邑县| 保亭| 金华市| 攀枝花市| 丹寨县| 天津市| 孟连| 阳江市| 股票| 桂林市| 儋州市| 鄂伦春自治旗| 木里| 赤水市| 杂多县| 麻阳| 尚义县| 紫阳县| 宝兴县| 来安县| 连平县| 长沙县| 东莞市| 衡南县| 郑州市| 尉氏县| 南汇区| 锡林浩特市| 沂南县| 兴和县| 女性| 思南县|