找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods in Systems Biology; 14th International C Ezio Bartocci,Pietro Lio,Nicola Paoletti Conference proceedings 2016 Springe

[復制鏈接]
樓主: 生手
51#
發(fā)表于 2025-3-30 12:13:36 | 只看該作者
52#
發(fā)表于 2025-3-30 15:55:00 | 只看該作者
Generalized Method of Moments for Stochastic Reaction Networks in Equilibriumeither on statistical sampling or can only be applied to small systems. Here we present an inference procedure for stochastic models in equilibrium that is based on a moment matching scheme with optimal weighting and that can be used with high-throughput data like the one collected by flow cytometry
53#
發(fā)表于 2025-3-30 17:26:12 | 只看該作者
Inference of Delayed Biological Regulatory Networks from Time Series Datal observations. But with the development of high-throughput data, there is a growing need for methods that automatically generate admissible models. Our research aim is to provide a logical approach to infer BRNs based on given time series data and known influences among genes. In this paper, we pro
54#
發(fā)表于 2025-3-31 00:04:58 | 只看該作者
Matching Models Across Abstraction Levels with Gaussian Processesoften provide qualitatively concordant predictions over specific parametrisations, but it is generally unclear whether model predictions are quantitatively in agreement, and whether such agreement holds for different parametrisations. Here we present a generally applicable statistical machine learni
55#
發(fā)表于 2025-3-31 02:55:30 | 只看該作者
Target Controllability of Linear Networkss like cancer. Recent research in the area of network science has shown that network control theory can be a powerful tool in the understanding and manipulation of such bio-medical networks. In 2011, Liu et al. developed a polynomial time optimization algorithm for computing the size of the minimal
56#
發(fā)表于 2025-3-31 08:00:19 | 只看該作者
High-Performance Symbolic Parameter Synthesis of Biological Models: A Case Studynd therefore it is hard and computationally demanding to find admissible parameter values with respect to hypothesised constraints and wet-lab measurements. Recently, we have developed several high-performance techniques for parameter synthesis that are based on parallel coloured model checking. The
57#
發(fā)表于 2025-3-31 11:14:39 | 只看該作者
58#
發(fā)表于 2025-3-31 13:50:23 | 只看該作者
Local Traces: An Over-Approximation of the Behaviour of the Proteins in Rule-Based Modelsuld be to understand how the behaviour of these systems emerges from these low-level interactions. Yet this is a quite long term challenge and it is desirable to offer intermediary levels of abstraction, so as to get a better understanding of the models and to increase our confidence within our mech
59#
發(fā)表于 2025-3-31 20:42:23 | 只看該作者
60#
發(fā)表于 2025-3-31 23:28:43 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 13:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
镇沅| 清水河县| 安义县| 鹰潭市| 宁城县| 黑龙江省| 文安县| 长葛市| 迁安市| 博客| 民县| 板桥市| 从化市| 丹阳市| 乃东县| 社旗县| 波密县| 长治市| 云霄县| 大渡口区| 兴和县| 佳木斯市| 中山市| 绵竹市| 广汉市| 扶绥县| 高要市| 来凤县| 大连市| 南江县| 万安县| 宁波市| 黄平县| 弥渡县| 兴宁市| 新竹市| 潼南县| 湟中县| 信宜市| 霸州市| 浏阳市|