找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods in Optimal Control Problems; I. H. Mufti Book 1970 Springer-Verlag Berlin Heidelberg 1970 Control.Optimal control.TH

[復(fù)制鏈接]
樓主: 短暫
21#
發(fā)表于 2025-3-25 03:28:39 | 只看該作者
Second-Variation Method,-point boundary value problem which is the same as the one discussed in the successive sweep method. Since the two methods lead to the same auxiliary two-point boundary value problem, the method will be illustrated by means of a problem with fixed terminal time and no constraints of the form (2) or (3).
22#
發(fā)表于 2025-3-25 10:06:05 | 只看該作者
Concluding Remarks, advantageous to use a combination of two methods in such a way that we get a rapid initial convergence and a rapid final convergence. This may be achieved, for example, by starting the Computation with the conjugate gradient method and ending with the successive sweep method or the generalized Newton-Raphson method.
23#
發(fā)表于 2025-3-25 13:33:17 | 只看該作者
24#
發(fā)表于 2025-3-25 17:28:53 | 只看該作者
Book 1970s for the solution of optimal control problems. Only those methods that are based on the minimum (maximum) principle of Pontriagin are discussed here. The autline of the report is as follows: In the first two sections a control problem of Bolza is formulated and the necessary conditions in the form
25#
發(fā)表于 2025-3-25 22:31:58 | 只看該作者
26#
發(fā)表于 2025-3-26 02:32:12 | 只看該作者
27#
發(fā)表于 2025-3-26 05:06:19 | 只看該作者
28#
發(fā)表于 2025-3-26 11:32:58 | 只看該作者
Concluding Remarks, method is better (in the sense of the simplicity of formulation, convergence, computer time and computer storage) than the others in all situations. Each method, therefore, must be judged in the light of the problem at hand. For the purpose of constructing a general optimization technique it may be
29#
發(fā)表于 2025-3-26 13:54:57 | 只看該作者
30#
發(fā)表于 2025-3-26 20:16:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 22:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岳池县| 崇文区| 海门市| 多伦县| 琼中| 岐山县| 丽水市| 凤阳县| 休宁县| 庆元县| 黔南| 都江堰市| 西丰县| 吉水县| 汝城县| 句容市| 隆林| 汉阴县| 昭平县| 桑植县| 金寨县| 商南县| 涞水县| 郴州市| 嘉禾县| 开江县| 百色市| 临江市| 江永县| 紫阳县| 黄山市| 长汀县| 砚山县| 钦州市| 仲巴县| 阿克| 福建省| 宜城市| 越西县| 乌审旗| 施甸县|