找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods for Linear Integral Equations; Prem K. Kythe,Pratap Puri Book 2002 Birkh?user Boston 2002 Integral equation.Integral

[復制鏈接]
樓主: cherub
21#
發(fā)表于 2025-3-25 03:29:50 | 只看該作者
22#
發(fā)表于 2025-3-25 11:24:28 | 只看該作者
23#
發(fā)表于 2025-3-25 14:57:11 | 只看該作者
24#
發(fā)表于 2025-3-25 17:21:47 | 只看該作者
Helmut Laux,Matthias M. Schabel rule solves an FK2 of the form .(.)—λ (.) (.) = .(.) and yields an approximate solution ., which we take as a vector with functional values .. These values are used in the Nystr?m methods, discussed in Section 1.6, to yield the approximation .. We present in this and the next chapter some of these
25#
發(fā)表于 2025-3-25 22:23:41 | 只看該作者
https://doi.org/10.1007/978-3-540-85273-5h problems. Variational methods for solving boundary value problems are based on the techniques developed in the calculus of variations. They deal with the problem of minimizing a functional, and thus reducing the given problem to solving a system of algebraic equations. Conversely, a boundary value
26#
發(fā)表于 2025-3-26 02:17:18 | 只看該作者
27#
發(fā)表于 2025-3-26 07:19:40 | 只看該作者
Marktbewertung im Mehrperioden-Fallnotations. Delves and Mohamed (1985) use it to mean any kind of lack of analyticity in an integral equation. However, they distinguish between the following types of singular integral equations: (i) those with a semi-infinite or infinite range; (ii) those with a discontinuous derivative in either th
28#
發(fā)表于 2025-3-26 11:57:50 | 只看該作者
29#
發(fā)表于 2025-3-26 14:17:16 | 只看該作者
30#
發(fā)表于 2025-3-26 18:38:51 | 只看該作者
Marktbewertung im Mehrperioden-Fall equations the free term .(.) is the Laplace transform of an unknown function .(.), 0 < . < ∞, where . is the variable of the transform. In this chapter we present different numerical methods for computing the function .(.) since it is known that this problem is ill-posed.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-30 08:07
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
株洲市| 福泉市| 北宁市| 沁水县| 芦溪县| 宜君县| 洞口县| 苍溪县| 樟树市| 卢氏县| 阆中市| 嘉兴市| 长子县| 黄陵县| 洪泽县| 清河县| 措勤县| 突泉县| 六安市| 孟村| 华阴市| 东丰县| 枣庄市| 房产| 永兴县| 镇坪县| 天全县| 福清市| 塘沽区| 仪陇县| 旬阳县| 彰武县| 沂水县| 贵阳市| 连云港市| 赤峰市| 玉树县| 闽清县| 临颍县| 威信县| 兰州市|