找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods for Linear Integral Equations; Prem K. Kythe,Pratap Puri Book 2002 Birkh?user Boston 2002 Integral equation.Integral

[復(fù)制鏈接]
樓主: cherub
21#
發(fā)表于 2025-3-25 03:29:50 | 只看該作者
22#
發(fā)表于 2025-3-25 11:24:28 | 只看該作者
23#
發(fā)表于 2025-3-25 14:57:11 | 只看該作者
24#
發(fā)表于 2025-3-25 17:21:47 | 只看該作者
Helmut Laux,Matthias M. Schabel rule solves an FK2 of the form .(.)—λ (.) (.) = .(.) and yields an approximate solution ., which we take as a vector with functional values .. These values are used in the Nystr?m methods, discussed in Section 1.6, to yield the approximation .. We present in this and the next chapter some of these
25#
發(fā)表于 2025-3-25 22:23:41 | 只看該作者
https://doi.org/10.1007/978-3-540-85273-5h problems. Variational methods for solving boundary value problems are based on the techniques developed in the calculus of variations. They deal with the problem of minimizing a functional, and thus reducing the given problem to solving a system of algebraic equations. Conversely, a boundary value
26#
發(fā)表于 2025-3-26 02:17:18 | 只看該作者
27#
發(fā)表于 2025-3-26 07:19:40 | 只看該作者
Marktbewertung im Mehrperioden-Fallnotations. Delves and Mohamed (1985) use it to mean any kind of lack of analyticity in an integral equation. However, they distinguish between the following types of singular integral equations: (i) those with a semi-infinite or infinite range; (ii) those with a discontinuous derivative in either th
28#
發(fā)表于 2025-3-26 11:57:50 | 只看該作者
29#
發(fā)表于 2025-3-26 14:17:16 | 只看該作者
30#
發(fā)表于 2025-3-26 18:38:51 | 只看該作者
Marktbewertung im Mehrperioden-Fall equations the free term .(.) is the Laplace transform of an unknown function .(.), 0 < . < ∞, where . is the variable of the transform. In this chapter we present different numerical methods for computing the function .(.) since it is known that this problem is ill-posed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 12:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
拉萨市| 南投县| 乐山市| 泾川县| 台中市| 辛集市| 临桂县| 陆良县| 大姚县| 巨野县| 九龙城区| 合山市| 杭锦后旗| 疏勒县| 台江县| 肇州县| 郧西县| 和林格尔县| 天津市| 临夏县| 桐乡市| 阳西县| 五河县| 金堂县| 斗六市| 永宁县| 虎林市| 佛教| 阆中市| 甘谷县| 额尔古纳市| 宁蒗| 安仁县| 昌吉市| 冀州市| 黄浦区| 无棣县| 钟祥市| 黄冈市| 黄浦区| 永靖县|