找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods for Deep Learning; Theory, Algorithms, Wei Qi Yan Textbook 2023Latest edition The Editor(s) (if applicable) and The

[復(fù)制鏈接]
查看: 24738|回復(fù): 35
樓主
發(fā)表于 2025-3-21 20:00:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computational Methods for Deep Learning
副標(biāo)題Theory, Algorithms,
編輯Wei Qi Yan
視頻videohttp://file.papertrans.cn/233/232711/232711.mp4
概述Explores advanced topics in deep learning encompassing transformer models, control theory, and graph neural networks.Presents detailed mathematical descriptions and algorithms for generative pre-train
叢書名稱Texts in Computer Science
圖書封面Titlebook: Computational Methods for Deep Learning; Theory, Algorithms,  Wei Qi Yan Textbook 2023Latest edition The Editor(s) (if applicable) and The
描述.The first edition of this textbook was published in 2021. Over the past two years, we have invested in enhancing all aspects of deep learning methods to ensure the book is comprehensive and impeccable. Taking into account feedback from our readers and audience, the author has diligently updated this book.?.The second edition of this textbook presents control theory, transformer models, and graph neural networks (GNN) in deep learning. We have incorporated the latest algorithmic advances and large-scale deep learning models, such as GPTs, to align with the current research trends. Through the second edition, this book showcases how computational methods in deep learning serve as a dynamic driving force in this era of artificial intelligence (AI).?. .This book is intended for research students, engineers, as well as computer scientists with interest in computational methods in deep learning. Furthermore, it is also well-suited for researchers exploring topics such as machine intelligence, robotic control, and related areas..
出版日期Textbook 2023Latest edition
關(guān)鍵詞Deep Learning; Machine Learning; Pattern Analysis; Manifold Learning; Machine Vision; Reinforcement Learn
版次2
doihttps://doi.org/10.1007/978-981-99-4823-9
isbn_ebook978-981-99-4823-9Series ISSN 1868-0941 Series E-ISSN 1868-095X
issn_series 1868-0941
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Computational Methods for Deep Learning影響因子(影響力)




書目名稱Computational Methods for Deep Learning影響因子(影響力)學(xué)科排名




書目名稱Computational Methods for Deep Learning網(wǎng)絡(luò)公開度




書目名稱Computational Methods for Deep Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Methods for Deep Learning被引頻次




書目名稱Computational Methods for Deep Learning被引頻次學(xué)科排名




書目名稱Computational Methods for Deep Learning年度引用




書目名稱Computational Methods for Deep Learning年度引用學(xué)科排名




書目名稱Computational Methods for Deep Learning讀者反饋




書目名稱Computational Methods for Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:46:25 | 只看該作者
,Convolutional Neural Networks and?Recurrent Neural Networks,ally Region-based CNN (R-CNN), Single Shot MultiBox Detector (SSD), and You Only Look Once (YOLO). Capsule Neural Network (CapsNet)?has taken a topological structure?of a scene into consideration. The output will be a vector to reflect this geometric relationship.
板凳
發(fā)表于 2025-3-22 04:11:22 | 只看該作者
地板
發(fā)表于 2025-3-22 07:31:19 | 只看該作者
5#
發(fā)表于 2025-3-22 12:06:04 | 只看該作者
6#
發(fā)表于 2025-3-22 16:39:18 | 只看該作者
7#
發(fā)表于 2025-3-22 20:11:18 | 只看該作者
8#
發(fā)表于 2025-3-23 01:07:18 | 只看該作者
9#
發(fā)表于 2025-3-23 04:40:46 | 只看該作者
10#
發(fā)表于 2025-3-23 07:57:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁化县| 亳州市| 新平| 恭城| 玉龙| 河池市| 安顺市| 甘肃省| 彰化市| 安庆市| 新兴县| 石嘴山市| 宁阳县| 申扎县| 全椒县| 孝昌县| 论坛| 徐闻县| 比如县| 岳普湖县| 巴彦淖尔市| 韶关市| 会宁县| 汤原县| 巨野县| 资中县| 虞城县| 衡南县| 长葛市| 腾冲县| 崇州市| 年辖:市辖区| 三江| 乌鲁木齐市| 阿拉善右旗| 南漳县| 宜黄县| 浠水县| 霸州市| 沿河| 青铜峡市|