找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods and Function Theory; Proceedings of a Con Stephan Ruscheweyh,Edward B. Saff,Richard S. Varga Conference proceedings 1

[復制鏈接]
樓主: Enkephalin
21#
發(fā)表于 2025-3-25 06:07:43 | 只看該作者
https://doi.org/10.1007/978-3-642-00460-5e evolution of a slightly perturbed flat vortex sheet. We will indicate some open problems of current research and propose a new physically desingularized Vortex sheet equation, which agrees with the finite thickness vortex layer equations in the localized approximation.
22#
發(fā)表于 2025-3-25 10:26:59 | 只看該作者
On the maximal range problem for slit domains,e . Ω. as . We are interested in the explicit characterization of Ω. for some specific domains as well as the corresponding . ε ..(ω), i.e. the ones with .. In this paper we solve completely the maximal range problem for the slit domains . These results yield, for instance, new inequalities relating
23#
發(fā)表于 2025-3-25 12:03:19 | 只看該作者
On bernstein type inequalities and a weighted chebyshev approximation problem on ellipses,ny smaller ellipse with the same foci. For the uniform and a certain weighted uniform norm, and for the case that the two ellipses are not “too close”, we derive sharp estimates of this type and determine the corresponding extremal polynomials. These Bernstein type inequalities are closely connected
24#
發(fā)表于 2025-3-25 18:53:15 | 只看該作者
Conformal mapping and Fourier-Jacobi approximations,, we explain how the corner singularities of the of the derivative of the boundary correspondence function can be represented by Jacobi weight functions, and study the convergence properties of an associated Fourier-Jacobi method for approximating this derivative. The practical significance of this
25#
發(fā)表于 2025-3-25 23:46:04 | 只看該作者
26#
發(fā)表于 2025-3-26 03:41:40 | 只看該作者
27#
發(fā)表于 2025-3-26 07:01:20 | 只看該作者
Open problems and conjectures in complex analysis,
28#
發(fā)表于 2025-3-26 10:46:57 | 只看該作者
Orthogonal polynomials, chain sequences, three-term recurrence relations and continued fractions,
29#
發(fā)表于 2025-3-26 15:02:33 | 只看該作者
30#
發(fā)表于 2025-3-26 19:27:10 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 12:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
柞水县| 恭城| 嘉定区| 安多县| 庆安县| 天长市| 原平市| 阿克苏市| 芜湖市| 浮梁县| 平山县| 平南县| 永平县| 分宜县| 奉节县| 济阳县| 丹凤县| 湘西| 休宁县| 岑溪市| 辽阳县| 富源县| 丰台区| 武威市| 武夷山市| 马龙县| 竹北市| 罗源县| 灵台县| 杂多县| 中超| 金塔县| 盐山县| 清河县| 肇州县| 铁岭市| 邢台县| 莎车县| 育儿| 饶河县| 太仆寺旗|