找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods and Data Engineering; Proceedings of ICMDE Vijendra Singh,Vijayan K. Asari,R. B. Patel Conference proceedings 2021 Sp

[復(fù)制鏈接]
樓主: CHAFF
51#
發(fā)表于 2025-3-30 10:36:27 | 只看該作者
Grundbegriffe und rechtliche Grundlagenof this work is to implement a hybrid model for prediction by integrating the advantages of artificial neural net (ANN) and fuzzy logic. Genetic algorithm (GA) and particle swarm optimization (PSO) have been applied to optimize parameters of developed predicting model. The proposed scheme used a fuz
52#
發(fā)表于 2025-3-30 13:04:22 | 只看該作者
53#
發(fā)表于 2025-3-30 19:51:37 | 只看該作者
54#
發(fā)表于 2025-3-30 20:46:13 | 只看該作者
Martin Korda (Lehrbeauftragter)mes special significance. This paper represents a deep learning approach based on long short-term memory (LSTM) neural networks for efficient asset prognostics to save machines from critical failures. The effectiveness of the proposed methodology is demonstrated using the NASA-CMAPSS dataset, a benc
55#
發(fā)表于 2025-3-31 01:32:01 | 只看該作者
56#
發(fā)表于 2025-3-31 07:41:12 | 只看該作者
Martin Korda (Lehrbeauftragter)techniques are tested on different machine learning classifiers like tree-based, SVM, KNN and ensemble learning. Most of the intrusion detection technique tested on benchmark NSL-KDD dataset. But the standard NSL-KDD dataset is not balanced, i.e., for some classes, this dataset has an insufficient n
57#
發(fā)表于 2025-3-31 09:12:25 | 只看該作者
58#
發(fā)表于 2025-3-31 14:25:36 | 只看該作者
59#
發(fā)表于 2025-3-31 21:26:41 | 只看該作者
https://doi.org/10.1007/978-3-642-99607-8s classifiers. This paper presents a comprehensive review of feature extraction techniques used in vision-based sign language recognition system. A taxonomy of currently used techniques for feature extraction has been presented. The paper concludes by presenting future direction in feature extraction technique for Indian sign language (ISL).
60#
發(fā)表于 2025-4-1 01:38:53 | 只看該作者
Otto Blum,G. Schimpff,W. Schmidturity solutions are essential for end-to-end security. Considering this current scenario, in this paper, the key management techniques, particularly the lightweight Key Management Systems (KMS) methodologies that have been proposed in the past are reviewed in the context of Advanced Metering Infrastructure (AMI) of the Smart Grid Systems.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平潭县| 湘潭县| 阜城县| 荥经县| 常州市| 怀远县| 汽车| 山东省| 秦皇岛市| 吴堡县| 浮梁县| 和硕县| 灌云县| 斗六市| 灯塔市| 阳朔县| 扶风县| 辽阳县| 五大连池市| 襄垣县| 祁阳县| 桑日县| 通辽市| 高邮市| 鸡泽县| 大城县| 调兵山市| 马尔康县| 宁德市| 泰宁县| 五台县| 科技| 威信县| 饶阳县| 木兰县| 孟州市| 扶绥县| 西乡县| 北碚区| 丰都县| 上思县|