找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods and Data Engineering; Proceedings of ICMDE Vijendra Singh,Vijayan K. Asari,R. B. Patel Conference proceedings 2021 Sp

[復(fù)制鏈接]
樓主: CHAFF
41#
發(fā)表于 2025-3-28 17:33:01 | 只看該作者
42#
發(fā)表于 2025-3-28 20:26:11 | 只看該作者
978-981-15-6875-6Springer Nature Singapore Pte Ltd. 2021
43#
發(fā)表于 2025-3-29 01:11:51 | 只看該作者
44#
發(fā)表于 2025-3-29 05:54:19 | 只看該作者
45#
發(fā)表于 2025-3-29 11:06:08 | 只看該作者
An Overview of Use of Artificial Neural Network in Sustainable Transport System,for prediction algorithms. The objective of this study is to discuss the ANN technique and its use in transportation engineering. The paper also gives an overview of the advantages and disadvantages of ANN. Regular maintenance within the urban road infrastructure is a complex problem from both techn
46#
發(fā)表于 2025-3-29 14:53:11 | 只看該作者
On Roman Domination of Graphs Using a Genetic Algorithm,ped, and a feasibility function has been employed to maintain the feasibility of solutions obtained from the crossover operator. Experiments have been conducted on different types of graphs with known optimal results and on 120 instances of Harwell–Boeing graphs for which bounds are known. The algor
47#
發(fā)表于 2025-3-29 18:27:16 | 只看該作者
48#
發(fā)表于 2025-3-29 21:44:05 | 只看該作者
XGBoost: 2D-Object Recognition Using Shape Descriptors and Extreme Gradient Boosting Classifier,ree, random forest, and XGBClassifier, is made in terms of performance evaluation measures. The chapter demonstrates that XGBClassifier outperforms rather than other classifiers as it achieves high accuracy (88.36%), precision (88.24%), recall (88.36%), F1-score (87.94%), and area under curve (94.07
49#
發(fā)表于 2025-3-30 02:17:13 | 只看該作者
Comparison of Principle Component Analysis and Stacked Autoencoder on NSL-KDD Dataset,techniques are tested on different machine learning classifiers like tree-based, SVM, KNN and ensemble learning. Most of the intrusion detection technique tested on benchmark NSL-KDD dataset. But the standard NSL-KDD dataset is not balanced, i.e., for some classes, this dataset has an insufficient n
50#
發(fā)表于 2025-3-30 05:08:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
原阳县| 漾濞| 磴口县| 阿城市| 澄江县| 即墨市| 定南县| 曲阜市| 西昌市| 托克托县| 静安区| 石棉县| 渭南市| 宾阳县| 平凉市| 宜兴市| 洛隆县| 海宁市| 简阳市| 离岛区| 台前县| 日土县| 灌云县| 兰考县| 绿春县| 霍山县| 渝中区| 乐亭县| 红安县| 兰坪| 屏边| 疏附县| 潞城市| 中牟县| 平乐县| 云阳县| 靖州| 沾益县| 西和县| 奈曼旗| 闽侯县|