找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Mechanics with Deep Learning; An Introduction Genki Yagawa,Atsuya Oishi Textbook 2023 The Editor(s) (if applicable) and The A

[復(fù)制鏈接]
樓主: Anagram
21#
發(fā)表于 2025-3-25 03:43:41 | 只看該作者
Computational Mechanics with Deep Learning978-3-031-11847-0Series ISSN 1877-7341 Series E-ISSN 1877-735X
22#
發(fā)表于 2025-3-25 10:50:00 | 只看該作者
23#
發(fā)表于 2025-3-25 11:53:40 | 只看該作者
Organizing and Working in a Study Group,cy of element stiffness matrices (Sect.?.), finite element analysis using convolutional operations (Sect.?.), fluid analysis using variational autoencoders (Sect.?.), a zooming method using feedforward neural networks (Sect.?.), and an application of physics-informed neural networks to solid mechanics (Sect.?.).
24#
發(fā)表于 2025-3-25 18:06:22 | 只看該作者
1877-7341 e samples for practice.This book is intended for students, engineers, and researchers interested in both computational mechanics and deep learning. It presents the mathematical and computational foundations of Deep Learning with detailed mathematical formulas in an easy-to-understand manner. It also
25#
發(fā)表于 2025-3-25 21:49:04 | 只看該作者
26#
發(fā)表于 2025-3-26 01:24:37 | 只看該作者
Mathematical Background for Deep Learningning in recent years, and Sect.?. compares various methods for accelerating the training process. Finally, Sect.?. describes regularization methods to suppress overtraining for improving performance of the trained neural networks.
27#
發(fā)表于 2025-3-26 05:39:34 | 只看該作者
28#
發(fā)表于 2025-3-26 11:01:58 | 只看該作者
https://doi.org/10.1007/978-1-349-19936-5dynamics simulation, Sect.?. the formulation of the application of deep learning to fluid dynamics problems, Sect.?. recurrent neural networks that are suitable for the time-dependent problems covered in this chapter, and finally, Sect.?. a real application of deep learning to the fluid dynamics simulation.
29#
發(fā)表于 2025-3-26 16:33:22 | 只看該作者
https://doi.org/10.1007/978-1-349-19936-5h as segmentation of NURBS-defined shapes, and conventional surface-to-surface contact search methods are taken, respectively. With these preparations, Sect.?. formulates a contact search method using deep learning, and finally, Sect.?. shows a numerical example
30#
發(fā)表于 2025-3-26 18:24:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 03:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
济宁市| 万全县| 鄄城县| 江安县| 安岳县| 蕲春县| 巴林右旗| 含山县| 嘉祥县| 固安县| 大姚县| 巨野县| 马关县| 乐陵市| 广灵县| 城固县| 隆化县| 江阴市| 清水县| 双江| 抚州市| 青河县| 宜章县| 平遥县| 留坝县| 江山市| 靖州| 长岭县| 孝昌县| 永宁县| 兰溪市| 广州市| 六盘水市| 左权县| 百色市| 类乌齐县| 江山市| 鹿泉市| 福清市| 庆云县| 广灵县|