找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Mathematics and Variational Analysis; Nicholas J. Daras,Themistocles M. Rassias Book 2020 Springer Nature Switzerland AG 202

[復(fù)制鏈接]
樓主: FROM
31#
發(fā)表于 2025-3-26 23:43:07 | 只看該作者
32#
發(fā)表于 2025-3-27 04:21:00 | 只看該作者
33#
發(fā)表于 2025-3-27 08:53:32 | 只看該作者
Some New Ostrowski Type Integral Inequalities via General Fractional Integrals,e new estimates with respect to Ostrowski type integral inequalities via general fractional integrals are obtained. It is pointed out that some new special cases can be deduced from main results. Some applications to special means for different real numbers and new error estimates for the midpoint f
34#
發(fā)表于 2025-3-27 13:09:31 | 只看該作者
Some New Integral Inequalities via General Fractional Operators,integral operator via differentiable function. By applying the established identity, the generalized trapezoidal type integral inequalities have been discovered. It is pointed out that the results of this research provide integral inequalities for almost all fractional integrals discovered in recent
35#
發(fā)表于 2025-3-27 15:14:35 | 只看該作者
36#
發(fā)表于 2025-3-27 20:13:57 | 只看該作者
37#
發(fā)表于 2025-3-28 01:10:09 | 只看該作者
38#
發(fā)表于 2025-3-28 05:34:30 | 只看該作者
Additive (,, ,)-Functional Inequalities in Complex Banach Spaces,|..|?>?1, and .where .. and .. are fixed complex numbers with 1?+?|..|?>?|..|?>?1. Using the fixed point method and the direct method, we prove the Hyers–Ulam stability of the additive (.., ..)-functional inequalities (2) and (1) in complex Banach spaces.
39#
發(fā)表于 2025-3-28 09:20:18 | 只看該作者
40#
發(fā)表于 2025-3-28 10:39:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 16:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蒙山县| 隆昌县| 洛隆县| 卓资县| 大姚县| 保山市| 渑池县| 普格县| 淮北市| 晴隆县| 扬中市| 闵行区| 台湾省| 南城县| 莒南县| 阿拉善右旗| 阳朔县| 宁德市| 本溪市| 鸡泽县| 页游| 巫山县| 吴江市| 杭锦旗| 靖远县| 苍溪县| 承德县| 新丰县| 库车县| 洪江市| 庆云县| 万州区| 区。| 兴国县| 盐津县| 青神县| 高陵县| 金寨县| 徐闻县| 三穗县| 萨迦县|