找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Mathematics and Applications; Dia Zeidan,Seshadev Padhi,Peer Ueberholz Book 2020 The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
樓主: Fillmore
41#
發(fā)表于 2025-3-28 16:28:21 | 只看該作者
Inductive Description of Quadratic Lie and Pseudo-Euclidean Jordan Triple Systems,ic Lie triple systems so that we give an inductive description of all quadratic Lie triple systems. Moreover, we prove that any Jordan triple system is either a .-extension of a Jordan triple system or an ideal of codimension one of a .-extension. Many other results about Lie and Jordan triple systems are offered.
42#
發(fā)表于 2025-3-28 22:35:30 | 只看該作者
Studies of Vortex Dominated Flowsization of time-Caputo fractional derivative, additionally, we provided a proof of the von Neuman type stability analysis for the fractional Cauchy equation of fractional order. Several numerical examples are introduced to illustrate the behaviour of approximate solution for various values of fractional order.
43#
發(fā)表于 2025-3-29 00:45:30 | 只看該作者
44#
發(fā)表于 2025-3-29 07:08:23 | 只看該作者
45#
發(fā)表于 2025-3-29 11:00:34 | 只看該作者
Studies of Work and the Workplace in HCIh controls the global dynamics of the equation (Xu et al. in 2014 36th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBC), pp. 4334–4337 [.])), namely 0.001, 0.5 for small and large spatial domains at time ..
46#
發(fā)表于 2025-3-29 13:15:47 | 只看該作者
Studies of the Paris Manuscriptsresented from a computational standpoint. In this chapter, we prove that both methods (gPC and canonical polynomial expansions) yield exactly the same results when the random inputs are independent. We comment on the advantages and disadvantages of both techniques, and we make suggestions for computational applications.
47#
發(fā)表于 2025-3-29 16:21:20 | 只看該作者
48#
發(fā)表于 2025-3-29 21:05:03 | 只看該作者
49#
發(fā)表于 2025-3-30 01:25:35 | 只看該作者
Studies of Vortex Dominated Flowsd the logistic model. These models are formulated via random differential equations with a finite degree of randomness. Numerical simulations and computations are carried out to illustrate the capability of the Liouville-Gibbs theorem.
50#
發(fā)表于 2025-3-30 06:34:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 06:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台山市| 历史| 罗甸县| 平遥县| 迁安市| 崇文区| 馆陶县| 岱山县| 潞西市| 双峰县| 普陀区| 秦皇岛市| 鄂温| 金阳县| 岱山县| 中方县| 类乌齐县| 白河县| 太湖县| 双桥区| 大丰市| 青神县| 兴城市| 余庆县| 呼玛县| 商丘市| 民勤县| 浦东新区| 新邵县| 兰州市| 长岭县| 修水县| 岑巩县| 龙州县| 固安县| 乌兰察布市| 衢州市| 额尔古纳市| 剑阁县| 兴国县| 台州市|