找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Linguistics and Intelligent Text Processing; 18th International C Alexander Gelbukh Conference proceedings 2018 Springer Natu

[復(fù)制鏈接]
樓主: Coagulant
21#
發(fā)表于 2025-3-25 06:39:02 | 只看該作者
Sarcasm Annotation and Detection in Tweetse-of-the-art system for automatic sarcasm detection in tweets was implemented. Experiments on the two manually annotated datasets show comparable results, while deviating considerably from results on automatically annotated data, indicating that using hashtags is not a reliable approach to creating Twitter sarcasm corpora.
22#
發(fā)表于 2025-3-25 09:54:51 | 只看該作者
23#
發(fā)表于 2025-3-25 15:18:59 | 只看該作者
Benchmarking Multimodal Sentiment Analysist modalities, and generalizability. The framework illustrates the different facets of analysis to be considered while performing multimodal sentiment analysis and, hence, serves as a new benchmark for future research in this emerging field.
24#
發(fā)表于 2025-3-25 16:43:00 | 只看該作者
25#
發(fā)表于 2025-3-25 23:49:43 | 只看該作者
26#
發(fā)表于 2025-3-26 00:26:49 | 只看該作者
Grundgleichungen der Str?mungsmechanikaffected. A formal model is specified that induces in a compositional, bottom-up manner informative relation tuples which indicate perspectives on attitudes. This enables the reader to focus on interesting cases, since they are directly accessible from the parts of the relation tuple.
27#
發(fā)表于 2025-3-26 07:29:55 | 只看該作者
28#
發(fā)表于 2025-3-26 11:57:19 | 只看該作者
CSenticNet: A Concept-Level Resource for Sentiment Analysis in Chinese Languagepaper, we present a method for the construction of a Chinese sentiment resource. We utilize both English sentiment resources and the Chinese knowledge base NTU Multi-lingual Corpus. In particular, we first propose a resource based on SentiWordNet and a second version based on SenticNet.
29#
發(fā)表于 2025-3-26 15:22:32 | 只看該作者
Verb-Mediated Composition of Attitude Relations Comprising Reader and Writer Perspectiveaffected. A formal model is specified that induces in a compositional, bottom-up manner informative relation tuples which indicate perspectives on attitudes. This enables the reader to focus on interesting cases, since they are directly accessible from the parts of the relation tuple.
30#
發(fā)表于 2025-3-26 19:16:09 | 只看該作者
Customer Churn Prediction Using Sentiment Analysis and Text Classification of VOCptures a view of customer’s attitude and feedbacks. To the best of our knowledge, this is the first work that introduces text classification of VOC to churn prediction task. Experiments show that adding VOC analysis into a conventional churn prediction model results in a significant increase in predictive performance.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 01:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华容县| 微山县| 镇巴县| 汝阳县| 大庆市| 丽江市| 镇赉县| 鹿邑县| 滕州市| 桑植县| 邹平县| 弋阳县| 浦城县| 鹰潭市| 大姚县| 将乐县| 诸暨市| 永康市| 新巴尔虎右旗| 庆元县| 巫溪县| 灵川县| 乌兰浩特市| 临夏市| 太和县| 聂拉木县| 湘阴县| 乌苏市| 天全县| 武宁县| 元谋县| 兴隆县| 蒲城县| 宿迁市| 马公市| 桃江县| 揭西县| 兰坪| 利川市| 女性| 南部县|