找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Linear and Commutative Algebra; Martin Kreuzer,Lorenzo Robbiano Textbook 2016 Springer International Publishing Switzerland

[復(fù)制鏈接]
樓主: chondrocyte
11#
發(fā)表于 2025-3-23 10:38:08 | 只看該作者
12#
發(fā)表于 2025-3-23 17:26:14 | 只看該作者
https://doi.org/10.1007/978-3-8350-9596-0e are mainly interested in .-rational solutions, we can use an algorithm to find all 1-dimensional joint eigenspaces of the multiplication family: the eigenvalue method, or the eigenvector method. In general, if the base field . is finite, we can still obtain good results by using the techniques of
13#
發(fā)表于 2025-3-23 18:12:47 | 只看該作者
Endomorphisms,cal theory of eigenvalues and eigenspaces by defining eigenspaces and generalized eigenspaces with respect to every eigenfactor of ., i.e. every irreducible factor of the minimal polynomial. A?further important notion is that of a commendable endomorphism . which is defined by the condition that its
14#
發(fā)表于 2025-3-24 01:57:32 | 只看該作者
Families of Commuting Endomorphisms,tive subalgebra of the ring of the .-endomorphisms of .. Given an ideal . in??, the kernel of . is the intersection of the kernels of all endomorphisms in .. Now it turns out that the joint eigenspaces of ? are precisely the kernels of its maximal ideals, and . is the direct sum of the joint general
15#
發(fā)表于 2025-3-24 04:56:48 | 只看該作者
16#
發(fā)表于 2025-3-24 08:44:39 | 只看該作者
Zero-Dimensional Affine Algebras,zero-dimensional affine algebra . over a field ., the multiplication endomorphisms define a commuting family ?, called the multiplication family. Via the natural isomorphism between . and ?, we get a number of interesting connections: the joint generalized eigenspaces of ? are the local factors of .
17#
發(fā)表于 2025-3-24 12:15:27 | 只看該作者
Computing Primary and Maximal Components,examine various methods for computing the primary and maximal components of . in the fifth chapter. In addition to the generic approach, i.e., the approach using a generic linear form to get a splitting endomorphism, we use random linear forms, the power of the Frobenius endomorphism over finite bas
18#
發(fā)表于 2025-3-24 18:34:27 | 只看該作者
19#
發(fā)表于 2025-3-24 20:06:50 | 只看該作者
Textbook 2016mensional commutative rings, primary decompositions and polynomial system solving. It integrates the .Linear Algebra of the Third Millennium,. developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and
20#
發(fā)表于 2025-3-25 03:07:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 23:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平安县| 昆明市| 安龙县| 南充市| 宣威市| 五原县| 全椒县| 浑源县| 凤庆县| 嵊泗县| 漾濞| 南木林县| 开封市| 扬州市| 清涧县| 土默特左旗| 盐城市| 措勤县| 东乌珠穆沁旗| 湖口县| 五家渠市| 扬中市| 宁南县| 子洲县| 峨山| 旅游| 兴隆县| 赣榆县| 曲阳县| 盐城市| 醴陵市| 天长市| 徐闻县| 莲花县| 章丘市| 永兴县| 柯坪县| 遂川县| 施秉县| 织金县| 深圳市|