找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Learning Theory; 4th European Confere Paul Fischer,Hans Ulrich Simon Conference proceedings 1999 Springer-Verlag Berlin Heide

[復制鏈接]
樓主: BRISK
21#
發(fā)表于 2025-3-25 05:47:12 | 只看該作者
22#
發(fā)表于 2025-3-25 09:45:58 | 只看該作者
23#
發(fā)表于 2025-3-25 13:29:27 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:51 | 只看該作者
25#
發(fā)表于 2025-3-25 20:15:32 | 只看該作者
Strukturiert es Programmieren in Cnsion with respect to the average case. We show that the teaching complexity in the best case is bounded by the self-directed learning complexity. It is also bounded by the VCdimension, if the concept class is intersection-closed. This does not hold for arbitrary concept classes. We find examples which substantiate this gap.
26#
發(fā)表于 2025-3-26 00:40:55 | 只看該作者
Learnability of Quantified Formulasroperty of the basis of relations, their clone of polymorphisms. Finally, we use this technique to give a simpler proof of the already known dichotomy theorem over boolean domains and we present an extension of this theorem to bases with infinite size.
27#
發(fā)表于 2025-3-26 06:12:48 | 只看該作者
28#
發(fā)表于 2025-3-26 11:09:49 | 只看該作者
A Geometric Approach to Leveraging Weak Learners For this potential function, the direction of steepest descent can have negative components. Therefore we provide two transformations for obtaining suitable distributions from these directions of steepest descent. The resulting algorithms have bounds that are incomparable to AdaBoost’s, and their empirical performance is similar to AdaBoost’s.
29#
發(fā)表于 2025-3-26 13:26:39 | 只看該作者
Hardness Results for Neural Network Approximation Problemsnits, it is NP-hard to find such a network that makes mistakes on a proportion smaller than .. of the examples, for some constant .. We prove a similar result for the problem of approximately minimizing the quadratic loss of a two-layer network with a sigmoid output unit.
30#
發(fā)表于 2025-3-26 17:16:08 | 只看該作者
Learning Range Restricted Horn Expressionser utilises a previous result on learning function free Horn expressions. This is done by using techniques for flattening and unflattening of examples and clauses, and a procedure for model finding for range restricted expressions. This procedure can also be used to solve the implication problem for this class.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 10:03
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
类乌齐县| 武山县| 瑞昌市| 汪清县| 郑州市| 松阳县| 无棣县| 洪雅县| 建湖县| 蕉岭县| 呼和浩特市| 海盐县| 凤台县| 互助| 行唐县| 丹阳市| 阿拉尔市| 晋州市| 茶陵县| 布尔津县| 黑河市| 怀来县| 小金县| 呼图壁县| 渝中区| 沙洋县| 若羌县| 林甸县| 唐河县| 荔波县| 拜泉县| 漯河市| 酒泉市| 兴化市| 南雄市| 通道| 营口市| 公安县| 合山市| 黄石市| 常宁市|