找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Learning Theory; Third European Confe Shai Ben-David Conference proceedings 1997 Springer-Verlag Berlin Heidelberg 1997 Algor

[復(fù)制鏈接]
樓主: 懇求
51#
發(fā)表于 2025-3-30 10:29:34 | 只看該作者
52#
發(fā)表于 2025-3-30 13:48:32 | 只看該作者
53#
發(fā)表于 2025-3-30 20:36:48 | 只看該作者
Learning from incomplete boundary queries using split graphs and hypergraphs,et al. [7], it is assumed that membership queries on instances near the boundary of the target concept may receive a “don‘t know” answer..We show that zero-one threshold functions are efficiently learnable in this model. The learning algorithm uses split graphs when the boundary region has radius 1,
54#
發(fā)表于 2025-3-30 22:35:22 | 只看該作者
55#
發(fā)表于 2025-3-31 02:10:41 | 只看該作者
Monotonic and dual-monotonic probabilistic language learning of indexed families with high probabilive data. In particular, we consider the special case where the probability is equal to 1..Earlier results in the field of probabilistic identification established that — considering function identification — each collection of recursive functions identifiable with probability .>1/2 is deterministic
56#
發(fā)表于 2025-3-31 08:35:03 | 只看該作者
57#
發(fā)表于 2025-3-31 12:54:37 | 只看該作者
58#
發(fā)表于 2025-3-31 13:35:21 | 只看該作者
Learning under persistent drift,re the changes might be rapid but their “direction” is relatively constant. We model this type of change by assuming that the target distribution is changing continuously at a constant rate from one extreme distribution to another. We show in this case how to use a simple weighting scheme to estimat
59#
發(fā)表于 2025-3-31 18:36:55 | 只看該作者
Randomized hypotheses and minimum disagreement hypotheses for learning with noise,andomized hypotheses for learning with small sample sizes and high malicious noise rates. We show an algorithm that PAC learns any target class of VC-dimension . using randomized hypotheses and order of . training examples (up to logarithmic factors) while tolerating malicious noise rates even sligh
60#
發(fā)表于 2025-3-31 22:32:27 | 只看該作者
Learning when to trust which experts,hat this assumption does not take advantage of situations where both the outcome and the experts‘ predictions are based on some input which the learner gets to observe too. In particular, we exhibit a situation where each individual expert performs badly but collectively they perform well, and show
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 06:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鸡东县| 科尔| 师宗县| 尉氏县| 高平市| 马公市| 基隆市| 竹北市| 喀喇沁旗| 神木县| 敦化市| 城固县| 广州市| 阿尔山市| 本溪| 阿城市| 河西区| 衡阳市| 清流县| 碌曲县| 石首市| 文山县| 伊金霍洛旗| 巫溪县| 阿瓦提县| 赣榆县| 郓城县| 澎湖县| 法库县| 三门峡市| 天峻县| 乐亭县| 沭阳县| 湄潭县| 岗巴县| 霸州市| 大洼县| 新营市| 弥渡县| 塘沽区| 元氏县|