找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence in Expensive Optimization Problems; Yoel Tenne,Chi-Keong Goh Book 2010 Springer-Verlag Berlin Heidelberg 2010 a

[復(fù)制鏈接]
查看: 20537|回復(fù): 58
樓主
發(fā)表于 2025-3-21 18:07:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Computational Intelligence in Expensive Optimization Problems
編輯Yoel Tenne,Chi-Keong Goh
視頻videohttp://file.papertrans.cn/233/232498/232498.mp4
概述First book to introduce the emerging field of computational intelligence in expensive optimization problems.Provides both theoretical treatments and real-world insights gained by experience in computa
叢書(shū)名稱Adaptation, Learning, and Optimization
圖書(shū)封面Titlebook: Computational Intelligence in Expensive Optimization Problems;  Yoel Tenne,Chi-Keong Goh Book 2010 Springer-Verlag Berlin Heidelberg 2010 a
描述.In modern science and engineering, laboratory experiments are replaced by high fidelity and computationally expensive simulations. Using such simulations reduces costs and shortens development times but introduces new challenges to design optimization process. Examples of such challenges include limited computational resource for simulation runs, complicated response surface of the simulation inputs-outputs, and etc...Under such difficulties, classical optimization and analysis methods may perform poorly. This motivates the application of computational intelligence methods such as evolutionary algorithms, neural networks and fuzzy logic, which often perform well in such settings. This is the first book to introduce the emerging field of computational intelligence in expensive optimization problems. Topics covered include: dedicated implementations of evolutionary algorithms, neural networks and fuzzy logic. reduction of expensive evaluations (modelling, variable-fidelity, fitness inheritance), frameworks for optimization (model management, complexity control, model selection), parallelization of algorithms (implementation issues on clusters, grids, parallel machines), incorporatio
出版日期Book 2010
關(guān)鍵詞algorithm; algorithms; computational intelligence; control; data mining; evolution; evolutionary algorithm
版次1
doihttps://doi.org/10.1007/978-3-642-10701-6
isbn_softcover978-3-642-26318-7
isbn_ebook978-3-642-10701-6Series ISSN 1867-4534 Series E-ISSN 1867-4542
issn_series 1867-4534
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

書(shū)目名稱Computational Intelligence in Expensive Optimization Problems影響因子(影響力)




書(shū)目名稱Computational Intelligence in Expensive Optimization Problems影響因子(影響力)學(xué)科排名




書(shū)目名稱Computational Intelligence in Expensive Optimization Problems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Computational Intelligence in Expensive Optimization Problems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Computational Intelligence in Expensive Optimization Problems被引頻次




書(shū)目名稱Computational Intelligence in Expensive Optimization Problems被引頻次學(xué)科排名




書(shū)目名稱Computational Intelligence in Expensive Optimization Problems年度引用




書(shū)目名稱Computational Intelligence in Expensive Optimization Problems年度引用學(xué)科排名




書(shū)目名稱Computational Intelligence in Expensive Optimization Problems讀者反饋




書(shū)目名稱Computational Intelligence in Expensive Optimization Problems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:52:36 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:30:21 | 只看該作者
,Die Eind?mmung der Gewalt im Gro?raum,ution of computationally expensive optimization problems. Existing methods developed by other researchers or the authors’ group are overviewed and a new enhancement based on fitness inheritance is proposed. Whereas conventional evolutionary algorithms require a great number of calls to the evaluatio
地板
發(fā)表于 2025-3-22 05:57:44 | 只看該作者
5#
發(fā)表于 2025-3-22 11:19:21 | 只看該作者
Politik und globale Machtprojektion, reduce the number of function evaluations effectively. Although the approximation errors between the true function values and the approximation values are not small, the rough model can estimate the order relation of solutions with fair accuracy. By utilizing this nature of the rough model, we have
6#
發(fā)表于 2025-3-22 16:48:25 | 只看該作者
Schriften zur Unternehmensentwicklung algorithms used in the field of computer experiments are based on Kriging (Gaussian process regression). Starting with a spatial predictor including a measure of uncertainty, they proceed by iteratively choosing the point maximizing a criterion which is a compromise between predicted performance an
7#
發(fā)表于 2025-3-22 19:04:38 | 只看該作者
8#
發(fā)表于 2025-3-22 21:34:20 | 只看該作者
https://doi.org/10.1007/978-3-322-90403-4e help of modern statistical techniques to create powerful strategies for expensive optimization. For example, it shows how the regularization of some parameters of the EDAs probabilistic models can yield dramatic improvements in efficiency. In this context a new class, Shrinkage EDAs, based on shri
9#
發(fā)表于 2025-3-23 04:28:57 | 只看該作者
10#
發(fā)表于 2025-3-23 07:06:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 11:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长海县| 武宁县| 宜州市| 永春县| 商丘市| 民县| 孟连| 秭归县| 宜黄县| 苗栗县| 临沭县| 中卫市| 卢氏县| 大埔区| 兖州市| 旬邑县| 梧州市| 读书| 南陵县| 苍溪县| 呼伦贝尔市| 乐平市| 施秉县| 于田县| 盐山县| 礼泉县| 天柱县| 万宁市| 柳河县| 温宿县| 凤台县| 比如县| 旬阳县| 杂多县| 凤城市| 灵山县| 高邮市| 彰化县| 裕民县| 大英县| 邵东县|