找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence and Informatics; Principles and Pract Imre J. Rudas,János Fodor,Janusz Kacprzyk Book 2010 Springer Berlin Heidel

[復制鏈接]
樓主: 相反
11#
發(fā)表于 2025-3-23 11:38:25 | 只看該作者
12#
發(fā)表于 2025-3-23 14:41:44 | 只看該作者
A Novel Approach to Solve Multiple Traveling Salesmen Problem by Genetic Algorithm,Salesman Problem (TSP), where one or more salesmen can be used in the solution. The optimization task can be described as follows: given a fleet of vehicles, a common depot and several requests by the customers, find the set of routes with overall minimum route cost which service all the demands. Be
13#
發(fā)表于 2025-3-23 18:00:57 | 只看該作者
Some Examples of Computing the Possibilistic Correlation Coefficient from Joint Possibility Distrib distribution. First we consider joint possibility distributions, (1-.-.), (1-..-..), . and (1-..-.) on the set {(.).| .≥0,.≥0,.+.≤1}, then we will show (i) how the possibilistic correlation coefficient of two linear marginal possibility distributions changes from zero to -1/2, and from -1/2 to -3/5
14#
發(fā)表于 2025-3-23 22:17:12 | 只看該作者
15#
發(fā)表于 2025-3-24 05:23:04 | 只看該作者
Neural Networks Adaptation with NEAT-Like Approach, of neural networks structure and synaptic weights. Non-linear function XOR approximation is tested and evaluated with this method with the aim of perspective application in humanoid robot NAO. The experiments show that selected method NEAT is suitable for this type of adaptation of NN, because of i
16#
發(fā)表于 2025-3-24 09:43:14 | 只看該作者
Incremental Rule Base Creation with Fuzzy Rule Interpolation-Based Q-Learning,feedback of the environment, called rewards. Using these rewards the system can learn which action is considered to be the best choice in a given state. One of the most frequently used RL method is the Q-learning, which was originally introduced for discrete states and actions. Applying fuzzy reason
17#
發(fā)表于 2025-3-24 12:39:39 | 只看該作者
Protective Fuzzy Control of Hexapod Walking Robot Driver in Case of Walking and Dropping,elihoods of walking on rough terrain is falling over. This posed the requirement that the robot had to be able to continue walking even after multiple falls. One of the goals was to create a control mechanism in the engine layer that will ensure optimal walk as well as protection from breaking down.
18#
發(fā)表于 2025-3-24 15:11:17 | 只看該作者
19#
發(fā)表于 2025-3-24 22:05:56 | 只看該作者
20#
發(fā)表于 2025-3-24 23:17:06 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 06:21
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
信阳市| 清水县| 泰顺县| 克拉玛依市| 吕梁市| 金坛市| 民勤县| 光山县| 高台县| 临湘市| 娄烦县| 通江县| 华蓥市| 顺昌县| 凤山市| 丰顺县| 枣强县| 济宁市| 文安县| 宜章县| 勃利县| 射洪县| 邮箱| 铁力市| 万山特区| 卓尼县| 隆化县| 武城县| 获嘉县| 南汇区| 漳浦县| 锦屏县| 新竹市| 阿尔山市| 富平县| 繁峙县| 长宁区| 多伦县| 泰州市| 和顺县| 鄂托克前旗|