找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence in Data Science; Third IFIP TC 12 Int Aravindan Chandrabose,Ulrich Furbach,Anand Kumar M Conference proceedings

[復(fù)制鏈接]
樓主: 欺侮
11#
發(fā)表于 2025-3-23 13:11:19 | 只看該作者
12#
發(fā)表于 2025-3-23 17:42:14 | 只看該作者
13#
發(fā)表于 2025-3-23 21:53:00 | 只看該作者
14#
發(fā)表于 2025-3-24 00:56:55 | 只看該作者
15#
發(fā)表于 2025-3-24 03:54:40 | 只看該作者
16#
發(fā)表于 2025-3-24 08:30:13 | 只看該作者
Effective Emotion Recognition from Partially Occluded Facial Images Using Deep Learningal muscles irrespective of pose, face shape, illumination, and image resolution is very much essential for serving the purpose. However, extraction and analysis of facial and appearance based features fails with improper face alignment and occlusions. Few existing works on these problems mainly dete
17#
發(fā)表于 2025-3-24 12:04:09 | 只看該作者
Emotion Recognition in Sentences - A Recurrent Neural Network Approachmentioned data set and an accuracy of 91.6% for the prediction of degree of emotion for a sentence. Additionally, every sentence is associated with a degree of the dominant emotion. One can infer that a degree of emotion means the extent of the emphasis of an emotion. Although, more than one sentenc
18#
發(fā)表于 2025-3-24 16:24:45 | 只看該作者
Tamil Paraphrase Detection Using Encoder-Decoder Neural Networkst systems. The system was trained and evaluated on DPIL@FIRE2016 Shared Task dataset. To our knowledge, ours is the first deep learning model which validates the training instances of both the subtask-1 and subtask-2 dataset of DPIL shared task.
19#
發(fā)表于 2025-3-24 19:49:14 | 只看該作者
Trustworthy User Recommendation Using Boosted Vector Similarity Measureposed model in terms of accuracy measures such as precision@k and recall@k and error measures, namely, MAE, MSE and RMSE is discussed in this paper. The evaluation shows that the proposed system outperforms other recommender system with minimum MAE and RMSE.
20#
發(fā)表于 2025-3-25 01:26:02 | 只看該作者
Sensitive Keyword Extraction Based on Cyber Keywords and LDA in Twitter to Avoid Regretshe originality of this research work lies in identifying sensitive keywords that reveal Tweeter’s Personally Identifiable Information through the novel Topic Keyword Extractor. The potential sensitive topics in which the social media users frequently exhibit personal information and unintended infor
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 10:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
峨眉山市| 罗江县| 穆棱市| 全南县| 广元市| 皋兰县| 饶阳县| 视频| 鹤庆县| 平原县| 杭州市| 华池县| 罗田县| 甘肃省| 化德县| 潮州市| 如皋市| 琼海市| 顺昌县| 固原市| 若羌县| 汶上县| 正定县| 大悟县| 嘉兴市| 汶川县| 抚松县| 黔江区| 嫩江县| 凯里市| 呼图壁县| 嘉鱼县| 喜德县| 高平市| 新野县| 安康市| 习水县| 津市市| 横山县| 沾益县| 麟游县|