找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence in Data Science; Third IFIP TC 12 Int Aravindan Chandrabose,Ulrich Furbach,Anand Kumar M Conference proceedings

[復制鏈接]
樓主: 欺侮
11#
發(fā)表于 2025-3-23 13:11:19 | 只看該作者
12#
發(fā)表于 2025-3-23 17:42:14 | 只看該作者
13#
發(fā)表于 2025-3-23 21:53:00 | 只看該作者
14#
發(fā)表于 2025-3-24 00:56:55 | 只看該作者
15#
發(fā)表于 2025-3-24 03:54:40 | 只看該作者
16#
發(fā)表于 2025-3-24 08:30:13 | 只看該作者
Effective Emotion Recognition from Partially Occluded Facial Images Using Deep Learningal muscles irrespective of pose, face shape, illumination, and image resolution is very much essential for serving the purpose. However, extraction and analysis of facial and appearance based features fails with improper face alignment and occlusions. Few existing works on these problems mainly dete
17#
發(fā)表于 2025-3-24 12:04:09 | 只看該作者
Emotion Recognition in Sentences - A Recurrent Neural Network Approachmentioned data set and an accuracy of 91.6% for the prediction of degree of emotion for a sentence. Additionally, every sentence is associated with a degree of the dominant emotion. One can infer that a degree of emotion means the extent of the emphasis of an emotion. Although, more than one sentenc
18#
發(fā)表于 2025-3-24 16:24:45 | 只看該作者
Tamil Paraphrase Detection Using Encoder-Decoder Neural Networkst systems. The system was trained and evaluated on DPIL@FIRE2016 Shared Task dataset. To our knowledge, ours is the first deep learning model which validates the training instances of both the subtask-1 and subtask-2 dataset of DPIL shared task.
19#
發(fā)表于 2025-3-24 19:49:14 | 只看該作者
Trustworthy User Recommendation Using Boosted Vector Similarity Measureposed model in terms of accuracy measures such as precision@k and recall@k and error measures, namely, MAE, MSE and RMSE is discussed in this paper. The evaluation shows that the proposed system outperforms other recommender system with minimum MAE and RMSE.
20#
發(fā)表于 2025-3-25 01:26:02 | 只看該作者
Sensitive Keyword Extraction Based on Cyber Keywords and LDA in Twitter to Avoid Regretshe originality of this research work lies in identifying sensitive keywords that reveal Tweeter’s Personally Identifiable Information through the novel Topic Keyword Extractor. The potential sensitive topics in which the social media users frequently exhibit personal information and unintended infor
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 14:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
黄冈市| 海林市| 托里县| 玉林市| 青铜峡市| 文安县| 名山县| 游戏| 大方县| 台前县| 兰溪市| 霍州市| 梁河县| 静安区| 福贡县| 大港区| 北碚区| 将乐县| 镇沅| 青州市| 观塘区| 宁津县| 海晏县| 绍兴县| 田阳县| 青龙| 怀远县| 太白县| 体育| 诸暨市| 如皋市| 红原县| 页游| 沈阳市| 光泽县| 淄博市| 美姑县| 屏山县| 延长县| 青川县| 高陵县|