找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence in Data Mining - Volume 1; Proceedings of the I Lakhmi C. Jain,Himansu Sekhar Behera,Durga Prasad Conference pr

[復(fù)制鏈接]
查看: 9481|回復(fù): 67
樓主
發(fā)表于 2025-3-21 16:34:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computational Intelligence in Data Mining - Volume 1
副標(biāo)題Proceedings of the I
編輯Lakhmi C. Jain,Himansu Sekhar Behera,Durga Prasad
視頻videohttp://file.papertrans.cn/233/232481/232481.mp4
概述Presents latest research findings in data mining.Entails thought-provoking developments to help research students.Discusses most recent cutting edge scientific technologies in computing.Includes suppl
叢書名稱Smart Innovation, Systems and Technologies
圖書封面Titlebook: Computational Intelligence in Data Mining - Volume 1; Proceedings of the I Lakhmi C. Jain,Himansu Sekhar Behera,Durga Prasad  Conference pr
描述The contributed volume aims to explicate and address the difficulties and challenges for the seamless integration of two core disciplines of computer science, i.e., computational intelligence and data mining. Data Mining aims at the automatic discovery of underlying non-trivial knowledge from datasets by applying intelligent analysis techniques. The interest in this research area has experienced a considerable growth in the last years due to two key factors: (a) knowledge hidden in organizations’ databases can be exploited to improve strategic and managerial decision-making; (b) the large volume of data managed by organizations makes it impossible to carry out a manual analysis. The book addresses different methods and techniques of integration for enhancing the overall goal of data mining. The book helps to disseminate the knowledge about some innovative, active research directions in the field of data mining, machine and computational intelligence, along with some current issues and applications of related topics.
出版日期Conference proceedings 2015
關(guān)鍵詞Advance Computing Methods; Big Data Analysis; CIDM; CIDM 2014; CIDM Proceedings; Computational Intelligen
版次1
doihttps://doi.org/10.1007/978-81-322-2205-7
isbn_softcover978-81-322-2989-6
isbn_ebook978-81-322-2205-7Series ISSN 2190-3018 Series E-ISSN 2190-3026
issn_series 2190-3018
copyrightSpringer India 2015
The information of publication is updating

書目名稱Computational Intelligence in Data Mining - Volume 1影響因子(影響力)




書目名稱Computational Intelligence in Data Mining - Volume 1影響因子(影響力)學(xué)科排名




書目名稱Computational Intelligence in Data Mining - Volume 1網(wǎng)絡(luò)公開度




書目名稱Computational Intelligence in Data Mining - Volume 1網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Intelligence in Data Mining - Volume 1被引頻次




書目名稱Computational Intelligence in Data Mining - Volume 1被引頻次學(xué)科排名




書目名稱Computational Intelligence in Data Mining - Volume 1年度引用




書目名稱Computational Intelligence in Data Mining - Volume 1年度引用學(xué)科排名




書目名稱Computational Intelligence in Data Mining - Volume 1讀者反饋




書目名稱Computational Intelligence in Data Mining - Volume 1讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:30:44 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:13:07 | 只看該作者
Hybrid Synchronous Discrete Distance Time Model for Traffic Signal Optimization, within the urban transportation system. Optimized signal timings, not only reduce the wait time of vehicle users but also improve the mobility within the system. In effect, it also reduces the ever increasing emissions and fuel consumption. A novel synchronous discrete distance-time model is propos
地板
發(fā)表于 2025-3-22 06:51:41 | 只看該作者
5#
發(fā)表于 2025-3-22 10:09:55 | 只看該作者
6#
發(fā)表于 2025-3-22 14:12:29 | 只看該作者
7#
發(fā)表于 2025-3-22 20:28:52 | 只看該作者
8#
發(fā)表于 2025-3-23 00:13:07 | 只看該作者
Medical Data Mining for Discovering Periodically Frequent Diseases from Transactional Databases,interesting facts which helps experts in health care in decision making. Recently, frequent patterns in transactional medical databases that occur periodically are exploited to know the temporal aspects of various diseases. In this paper we modified K-means algorithm to extract yearly and monthly pe
9#
發(fā)表于 2025-3-23 01:22:59 | 只看該作者
10#
發(fā)表于 2025-3-23 07:16:02 | 只看該作者
Optimal Power Flow Using PSO,em objective while considering both the real and reactive as a sub problem. The proposed method is used for solving the non-linear optimization problems while minimizing the objective voltage stability margin is also maintained. The proposed technique is tested on IEEE 57 bus system.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 17:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凉城县| 平遥县| 东辽县| 徐州市| 冕宁县| 西丰县| 武川县| 科尔| 龙井市| 唐山市| 和政县| 南岸区| 富顺县| 安庆市| 翼城县| 伊吾县| 龙门县| 胶州市| 明溪县| 科技| 田阳县| 北京市| 高淳县| 象州县| 东乡族自治县| 南安市| 金阳县| 通辽市| 安化县| 车险| 阳曲县| 竹北市| 亳州市| 昆明市| 孝义市| 宁波市| 德安县| 莱州市| 桃源县| 自治县| 阜平县|