找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence for Water and Environmental Sciences; Omid Bozorg-Haddad,Babak Zolghadr-Asli Book 2022 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: retort
31#
發(fā)表于 2025-3-26 22:58:04 | 只看該作者
32#
發(fā)表于 2025-3-27 02:05:29 | 只看該作者
Die vernetzte Konsumgüterbrancheent and statistical models, includes Radial Based Function Neural Network (RBFNN), Adaptive Neuro Fuzzy Inference System (ANFIS), Feedforward Neural Network (FFNN), Linear Regression (LR), Generalized Linear Regression (GLR), and Support Vector Regression (SVR). An example of a real urban water dist
33#
發(fā)表于 2025-3-27 05:30:15 | 只看該作者
34#
發(fā)表于 2025-3-27 11:35:19 | 只看該作者
Optimization Algorithms Surpassing Metaphorhe number of algorithms based on natural behaviours has increased, the majority of them deal with some ordeals such as being stuck in local optimal results. Hence, these ordeals pave the way for the advent of new mathematical, population-based techniques. In this chapter, three powerful metaphor-fre
35#
發(fā)表于 2025-3-27 15:23:13 | 只看該作者
A Survey of PSO Contributions to Water and Environmental Sciencesvey revealed that PSO has been employed both solely and collaboratively with other approaches like machine learning techniques and simulation software to solve single- and multiple-objective problems of different sectors from surface water to renewable energy generation.
36#
發(fā)表于 2025-3-27 20:07:36 | 只看該作者
37#
發(fā)表于 2025-3-28 00:29:19 | 只看該作者
Data Mining Methods for Modeling in Water Scienceff and semi-treated sanitary/industrial sewage discharge. Therefore, artificial intelligence (AI) techniques are used to decrease model development costs and improve prediction errors, achieving more efficient models. In this chapter, some well-known techniques and AI-based methods are introduced, a
38#
發(fā)表于 2025-3-28 02:29:09 | 只看該作者
39#
發(fā)表于 2025-3-28 07:57:29 | 只看該作者
Deep Learning Application in Water and Environmental Sciencesn appropriate model, particularly in modeling large (big) and complex datasets. This chapter provides a review of deep learning concepts, introduce some of the developed deep learning structures, and their application in water and environmental studies.
40#
發(fā)表于 2025-3-28 13:08:24 | 只看該作者
Support Vector Machine Applications in Water and Environmental Sciencesls concept and its application in water and environmental sciences. Furthermore, this chapter introduces different types of SVM models and other emerging ones. Finally, the challenges of this method for future studies will be discussed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临海市| 襄垣县| 泊头市| 瑞丽市| 锡林郭勒盟| 镇远县| 远安县| 四川省| 绥滨县| 股票| 寻乌县| 星子县| 南木林县| 洪湖市| 新乐市| 临海市| 滨海县| 怀集县| 甘德县| 宜兴市| 内乡县| 两当县| 长乐市| 合山市| 瓮安县| 玉屏| 阿巴嘎旗| 陕西省| 江油市| 黄陵县| 镇巴县| 清新县| 都江堰市| 根河市| 金门县| 萝北县| 新疆| 资兴市| 博白县| 阿尔山市| 鄂托克旗|