找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence for Remote Sensing; Manuel Gra?a,Richard J. Duro Book 2008 Springer-Verlag Berlin Heidelberg 2008 Markov.Markov

[復(fù)制鏈接]
查看: 41841|回復(fù): 57
樓主
發(fā)表于 2025-3-21 18:36:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computational Intelligence for Remote Sensing
編輯Manuel Gra?a,Richard J. Duro
視頻videohttp://file.papertrans.cn/233/232460/232460.mp4
概述Presents recent results in computational intelligence applications in remote sensing.Includes supplementary material:
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Computational Intelligence for Remote Sensing;  Manuel Gra?a,Richard J. Duro Book 2008 Springer-Verlag Berlin Heidelberg 2008 Markov.Markov
描述.This book is a composition of different points of view regarding the application of Computational Intelligence techniques and methods to Remote Sensing data and applications. It is the general consensus that classification, its related data processing, and global optimization methods are core topics of Computational Intelligence. Much of the content of the book is devoted to image segmentation and recognition, using diverse tools from different areas of the Computational Intelligence field, ranging from Artificial Neural Networks to Markov Random Field modeling. The book covers a broad range of topics, starting from the hardware design of hyperspectral sensors, and data handling problems, namely data compression and watermarking issues, as well as autonomous web services. The main contents of the book are devoted to image analysis and efficient (parallel) implementations of these analysis techniques. The classes of images dealt with throughout the book are mostly multispectral-hyperspectral images, though there are some instances of processing Synthetic Aperture Radar images..
出版日期Book 2008
關(guān)鍵詞Markov; Markov random field; classification; cognition; computational intelligence; evolutionary algorith
版次1
doihttps://doi.org/10.1007/978-3-540-79353-3
isbn_softcover978-3-642-09823-9
isbn_ebook978-3-540-79353-3Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

書目名稱Computational Intelligence for Remote Sensing影響因子(影響力)




書目名稱Computational Intelligence for Remote Sensing影響因子(影響力)學(xué)科排名




書目名稱Computational Intelligence for Remote Sensing網(wǎng)絡(luò)公開度




書目名稱Computational Intelligence for Remote Sensing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Intelligence for Remote Sensing被引頻次




書目名稱Computational Intelligence for Remote Sensing被引頻次學(xué)科排名




書目名稱Computational Intelligence for Remote Sensing年度引用




書目名稱Computational Intelligence for Remote Sensing年度引用學(xué)科排名




書目名稱Computational Intelligence for Remote Sensing讀者反饋




書目名稱Computational Intelligence for Remote Sensing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:31:19 | 只看該作者
Remote Sensing Data Compression,e a special challenge, and multiple efficient image compression systems have appeared. This chapter contributes an overview of several techniques for image coding systems, focusing on lossy approaches.
板凳
發(fā)表于 2025-3-22 01:25:12 | 只看該作者
地板
發(fā)表于 2025-3-22 07:33:19 | 只看該作者
5#
發(fā)表于 2025-3-22 09:11:32 | 只看該作者
On Content-Based Image Retrieval Systems for Hyperspectral Remote Sensing Images, the literature regarding remote sensing images. Our own focus is on hyperspectral images. The approach we are pursuing is that of characterizing the spectral content of the image through the set of endmembers induced from it. We describe some ideas and numerical experiments for a system that would
6#
發(fā)表于 2025-3-22 16:46:45 | 只看該作者
7#
發(fā)表于 2025-3-22 17:16:12 | 只看該作者
8#
發(fā)表于 2025-3-22 21:52:07 | 只看該作者
Parallel Classification of Hyperspectral Images Using Neural Networks,est-generation Earth observation instruments is expected to introduce extremely high computational requirements in neural network-based algorithms for classification of high-dimensional data sets such as hyperspectral images, with hundreds of spectral channels and very fine spatial resolution. A sig
9#
發(fā)表于 2025-3-23 05:02:10 | 只看該作者
10#
發(fā)表于 2025-3-23 06:53:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 05:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉义市| 龙江县| 班玛县| 建德市| 江源县| 万安县| 吉水县| 平乡县| 龙南县| 常熟市| 乐亭县| 永兴县| 江川县| 麻江县| 沅陵县| 上虞市| 雷山县| 浦县| 沭阳县| 凤山县| 建湖县| 柳州市| 兴安盟| 简阳市| 绥芬河市| 呼玛县| 舟山市| 当阳市| 贵南县| 杭州市| 陈巴尔虎旗| 祁东县| 伊宁市| 河间市| 沁水县| 吉林省| 崇阳县| 温宿县| 门头沟区| 茶陵县| 安顺市|