找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence and Intelligent Systems; 6th International Sy Zhenhua Li,Xiang Li,Zhihua Cai Conference proceedings 2012 Springe

[復(fù)制鏈接]
樓主: 重要
21#
發(fā)表于 2025-3-25 06:28:16 | 只看該作者
22#
發(fā)表于 2025-3-25 11:03:17 | 只看該作者
https://doi.org/10.1007/978-3-658-11012-3solution. So we present an unsupervised clustering algorithm which combing with genetic algorithm and k-medoids clustering algorithm. All of these methods are efficiently to solve the defects of traditional k-medoids algorithm. And the algorithm can distinguish new attack from already existed attack
23#
發(fā)表于 2025-3-25 12:40:30 | 只看該作者
24#
發(fā)表于 2025-3-25 18:38:03 | 只看該作者
Roberta Pearson,Anthony N. Smithuperior in the condition of time restraint comparing with the Genetic Algorithm, and validate the effectiveness of employing the Artificial Fish Swarm Algorithm in resolving dynamic weapon target assignment problem.
25#
發(fā)表于 2025-3-25 23:41:01 | 只看該作者
26#
發(fā)表于 2025-3-26 00:54:21 | 只看該作者
,Die Erz?hlung in der Literaturwissenschaft,truct SVM prediction model according to the time series data. Comparing with the traditional time series prediction model, SVM prediction models can reveal non-linear, non-stationary and randomness of the time series, and have higher prediction accuracy.
27#
發(fā)表于 2025-3-26 06:13:38 | 只看該作者
Jan Shaw,Philippa Kelly,L. E. Semleronstruction of FP-tree and the discovery of frequent itemsets can be realized simultaneously. Compared with FP-growth, it is not necessary to mine frequent itemsets after the construction of the whole FP-tree in Dynamic-prune. Experimental results show Dynamic-prune is efficient and scalable.
28#
發(fā)表于 2025-3-26 08:56:56 | 只看該作者
29#
發(fā)表于 2025-3-26 13:35:17 | 只看該作者
1865-0929 rnational Symposium on Intelligence Computation and Applications, ISICA 2012, held in Wuhan, China, in October 2012. The 72 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on artificial life, adaptive behavior
30#
發(fā)表于 2025-3-26 17:10:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 09:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清远市| 始兴县| 兖州市| 葵青区| 凭祥市| 炉霍县| 卢氏县| 秀山| 体育| 九寨沟县| 龙游县| 安阳市| 镇康县| 孟连| 内丘县| 桑植县| 南城县| 湘潭县| 丹阳市| 九龙县| 印江| 凤凰县| 道孚县| 农安县| 增城市| 于田县| 将乐县| 沧源| 博客| 北安市| 台前县| 天柱县| 任丘市| 株洲县| 竹山县| 巨野县| 信宜市| 资源县| 凤山县| 菏泽市| 南汇区|