找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence Methods for Bioinformatics and Biostatistics; 16th International M Paolo Cazzaniga,Daniela Besozzi,Luca Manzoni

[復(fù)制鏈接]
查看: 42044|回復(fù): 49
樓主
發(fā)表于 2025-3-21 20:00:05 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics
副標(biāo)題16th International M
編輯Paolo Cazzaniga,Daniela Besozzi,Luca Manzoni
視頻videohttp://file.papertrans.cn/233/232387/232387.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computational Intelligence Methods for Bioinformatics and Biostatistics; 16th International M Paolo Cazzaniga,Daniela Besozzi,Luca Manzoni
描述.This book constitutes revised selected papers from the 16.th. International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2019, which was held in Bergamo, Italy, during September 4-6, 2019. ..The 28 full papers presented in this volume were carefully reviewed and selected from 55 submissions. The papers are grouped in topical sections as follows: Computational Intelligence Methods for Bioinformatics and Biostatistics; Algebraic and Computational Methods for the Study of RNA Behaviour; Intelligence methods for molecular characterization medicine; Machine Learning in Healthcare Informatics and Medical Biology; Modeling and Simulation Methods for Computational Biology and Systems Medicine..
出版日期Conference proceedings 2020
關(guān)鍵詞bioinformatics; communication systems; computational biology; computer networks; computer systems; comput
版次1
doihttps://doi.org/10.1007/978-3-030-63061-4
isbn_softcover978-3-030-63060-7
isbn_ebook978-3-030-63061-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics影響因子(影響力)




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics影響因子(影響力)學(xué)科排名




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics網(wǎng)絡(luò)公開度




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics被引頻次




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics被引頻次學(xué)科排名




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics年度引用




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics年度引用學(xué)科排名




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics讀者反饋




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:22:38 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:30:41 | 只看該作者
,Zuf?llige Mengen — allgemeine Theorie,ty and infer reliable models of cancer evolution. We here build up on previous works on cancer progression inference from genomic alteration data, to deliver two distinct .-based applications, which allow to produce, visualize and manipulate cancer evolution models, also by interacting with public g
地板
發(fā)表于 2025-3-22 07:48:34 | 只看該作者
,Zuf?llige Mosaike und Ebenenprozesse,eters settings for a model is complex: the system is likely to be noisy, the data points may be sparse, and there may be many inter-related parameters. We apply computational intelligence and data mining techniques in novel ways to investigate this significant problem..We construct an original compu
5#
發(fā)表于 2025-3-22 11:34:15 | 只看該作者
6#
發(fā)表于 2025-3-22 15:19:11 | 只看該作者
Hans Weinrichter,Franz Hlawatsch methods reconstruct a single medical image to detect outliers either in the learned feature space or from high reconstruction loss. However, without considering continuity between multiple adjacent slices, they cannot directly discriminate diseases composed of the accumulation of subtle anatomical
7#
發(fā)表于 2025-3-22 19:03:21 | 只看該作者
Hans Weinrichter,Franz Hlawatschon the trade-off between the detection rate of outbreaks and the chances of raising a false alarm. Recent research has shown that the use of machine learning for the fusion of multiple statistical algorithms improves outbreak detection. Instead of relying only on the binary outputs (. or .) of the s
8#
發(fā)表于 2025-3-23 00:59:30 | 只看該作者
Stochastische Differentialgleichungen,ylation) has become an invaluable source of information for assessing the expected performance of individual drugs and their combinations. Merging relevant information from the omics data modalities provides the statistical basis for determining suitable therapies for specific cancer patients. Diffe
9#
發(fā)表于 2025-3-23 04:52:42 | 只看該作者
https://doi.org/10.1007/978-3-658-14132-5s on SpecFit, an optional module of the SpecOMS software. Because SpecOMS is particularly fast, SpecFit can be used within SpecOMS to further investigate spectra whose mass does not necessarily coincide with the mass of its corresponding peptide, and consequently to suggest modifications for these p
10#
發(fā)表于 2025-3-23 06:14:56 | 只看該作者
Asymptotik integrierter Prozesseknowledge through data mining techniques. Symbolic aggregate approximation (SAX) is a state-of-the-art method that performs discretization and dimensionality reduction for univariate TS, which are key steps for TS representation and analysis. In this work, we propose MSAX, an extension of this algor
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 08:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
温州市| 孟州市| 麻栗坡县| 德庆县| 柳河县| 抚松县| 铅山县| 赣州市| 思南县| 衡阳市| 新宁县| 乐至县| 酉阳| 青岛市| 定边县| 太原市| 刚察县| 那坡县| 和硕县| 梁山县| 临沭县| 新宾| 新巴尔虎左旗| 玛曲县| 宁南县| 吉木萨尔县| 屏东县| 东光县| 乌苏市| 辽阳市| 安达市| 高密市| 临江市| 深圳市| 杂多县| 襄樊市| 蓝田县| 康定县| 乐山市| 都安| 镇江市|