找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence Methods for Bioinformatics and Biostatistics; 11th International M Clelia DI Serio,Pietro Liò,Roberto Tagliaferr

[復(fù)制鏈接]
查看: 34704|回復(fù): 58
樓主
發(fā)表于 2025-3-21 20:09:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics
副標(biāo)題11th International M
編輯Clelia DI Serio,Pietro Liò,Roberto Tagliaferri
視頻videohttp://file.papertrans.cn/233/232384/232384.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computational Intelligence Methods for Bioinformatics and Biostatistics; 11th International M Clelia DI Serio,Pietro Liò,Roberto Tagliaferr
描述.This book constitutes the thoroughly refereed post-conference proceedings of the 11th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2014, held in Cambridge, UK, in June 2014..The 25 revised full papers presented were carefully reviewed and selected from 44 submissions. The papers focus problems concerning computational techniques in bioinformatics, systems biology, medical informatics and biostatistics..
出版日期Conference proceedings 2015
關(guān)鍵詞evolutionary algorithms; gene ontology; image analysis; machine learning; parallel computing; association
版次1
doihttps://doi.org/10.1007/978-3-319-24462-4
isbn_softcover978-3-319-24461-7
isbn_ebook978-3-319-24462-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics影響因子(影響力)




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics影響因子(影響力)學(xué)科排名




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics網(wǎng)絡(luò)公開度




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics被引頻次




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics被引頻次學(xué)科排名




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics年度引用




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics年度引用學(xué)科排名




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics讀者反饋




書目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:31:40 | 只看該作者
Grundbegriffe der deskriptiven Statistik,mators. In the context of Gaussian graphical modeling, we compare the proposed estimator to the graphical lasso. This work is a brief exposé of the technical developments in [1], focussing on applications in gene-gene interaction network reconstruction.
板凳
發(fā)表于 2025-3-22 01:00:55 | 只看該作者
https://doi.org/10.1007/978-3-319-24462-4evolutionary algorithms; gene ontology; image analysis; machine learning; parallel computing; association
地板
發(fā)表于 2025-3-22 05:51:30 | 只看該作者
5#
發(fā)表于 2025-3-22 09:36:51 | 只看該作者
https://doi.org/10.1007/978-3-8348-9110-5on of a biological concept that is associated to one or more gene products through a process also known as annotation. Each annotation may be derived using different methods and an Evidence Code (EC) takes into account of this process. The importance and the specificity of both GO terms and annotati
6#
發(fā)表于 2025-3-22 16:05:59 | 只看該作者
7#
發(fā)表于 2025-3-22 17:07:27 | 只看該作者
8#
發(fā)表于 2025-3-22 22:37:47 | 只看該作者
9#
發(fā)表于 2025-3-23 02:43:54 | 只看該作者
Grundbegriffe der deskriptiven Statistik,longing to the same group are more similar between each other than items in different groups. Consensus clustering is a methodology for combining different clustering solutions from the same data set in a new clustering, in order to obtain a more accurate and stable solution. In this work we compare
10#
發(fā)表于 2025-3-23 05:53:16 | 只看該作者
,Urnen- und Teilchen/F?cher-Modelle,xpert, are now subjected to computational analytics. The use of machine learning techniques allows one to extend the computational imaging approach by considering various markers based on DNA, mRNA, microRNA (miRNA) and proteins that could be used for classification of disease taxonomy, response to
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 07:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜宾县| 长岭县| 许昌县| 卓资县| 多伦县| 鹤岗市| 绵阳市| 庄河市| 阳东县| 岳阳市| 长沙市| 壤塘县| 江孜县| 牟定县| 临夏市| 阳城县| 建昌县| 开鲁县| 图木舒克市| 南召县| 青浦区| 沁水县| 柳州市| 桦南县| 遂溪县| 万年县| 大名县| 南部县| 信宜市| 塔城市| 奉新县| 普兰店市| 临泽县| 茶陵县| 南江县| 新和县| 惠东县| 佛冈县| 嘉义县| 澳门| 平度市|