找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence; 11th International J Juan Julián Merelo,Jonathan Garibaldi,Kurosh Madan Conference proceedings 2021 Springer Na

[復(fù)制鏈接]
樓主: broach
41#
發(fā)表于 2025-3-28 15:58:23 | 只看該作者
Niching-Based Feature Selection with Multi-tree Genetic Programming for Dynamic Flexible Job Shop Sc and by comparing the different methods in a larger experimental setup. The results show that feature selection can generate better rules in most of the cases while also being more efficient to in a production environment.
42#
發(fā)表于 2025-3-28 21:48:30 | 只看該作者
Correlation Analysis Via Intuitionistic Fuzzy Modal and Aggregation Operatorsity and possibility modal operators along with intuitionistic fuzzy t-norms and t-conorms are investigated by verifying the conditions under which A-CC preserve the main properties related to conjugate and complement operations performed on A-IFS.
43#
發(fā)表于 2025-3-28 23:23:45 | 只看該作者
44#
發(fā)表于 2025-3-29 03:48:23 | 只看該作者
Towards a Class-Aware Information Granulation for Graph Embedding and Classificationormance improvements when considering also the ground-truth class labels in the information granulation procedure. Furthermore, since the granulation procedure is based on random walks, it is also very appealing in Big Data scenarios.
45#
發(fā)表于 2025-3-29 10:27:24 | 只看該作者
Deep Convolutional Neural Network Processing of Images for Obstacle Avoidancein the lab by a human operator. The network learned the correct responses of left, right, or straight for each of the images with a very low error rate when checked on test images. In addition, ten tests on the actual robot showed that it could successfully and consistently drive through the lab while avoiding obstacles.
46#
發(fā)表于 2025-3-29 14:52:42 | 只看該作者
47#
發(fā)表于 2025-3-29 16:09:37 | 只看該作者
48#
發(fā)表于 2025-3-29 20:11:08 | 只看該作者
49#
發(fā)表于 2025-3-30 02:15:40 | 只看該作者
https://doi.org/10.1007/978-3-642-69591-9n opens doors for a sampling version of the algorithm, which we call CVaR Q-learning. In order to allow optimizing CVaR on large state spaces, we also formulate loss functions that are later used in a deep learning context. Proposed methods are theoretically analyzed and experimentally verified.
50#
發(fā)表于 2025-3-30 07:37:40 | 只看該作者
CVaR Q-Learningn opens doors for a sampling version of the algorithm, which we call CVaR Q-learning. In order to allow optimizing CVaR on large state spaces, we also formulate loss functions that are later used in a deep learning context. Proposed methods are theoretically analyzed and experimentally verified.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
方城县| 景泰县| 武冈市| 惠东县| 怀柔区| 朝阳区| 湘潭县| 抚顺市| 白朗县| 江都市| 泉州市| 天门市| 四子王旗| 汪清县| 桂林市| 江孜县| 交口县| 十堰市| 长宁区| 昌乐县| 蒲江县| 绥阳县| 苏尼特左旗| 上蔡县| 西盟| 通榆县| 茶陵县| 武宣县| 浮梁县| 宁海县| 龙里县| 汤原县| 徐汇区| 化隆| 宁海县| 得荣县| 湛江市| 太仓市| 焉耆| 天柱县| 汕头市|