找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Geometry on Surfaces; Performing Computati Clara I. Grima,Alberto Márquez Book 2001 Springer Science+Business Media Dordrecht

[復(fù)制鏈接]
樓主: Heel-Spur
11#
發(fā)表于 2025-3-23 10:01:06 | 只看該作者
https://doi.org/10.1007/978-1-4419-8857-7n or of a set of sites. A triangulation is a partition of the domain defined by the input into triangles which meet only at shared sides. Since this kind of meshes are needed in all domains where the ambient space must be discretized, this structure must be studied on surfaces in addition to the pla
12#
發(fā)表于 2025-3-23 14:28:09 | 只看該作者
13#
發(fā)表于 2025-3-23 21:51:57 | 只看該作者
R. Rodrigues,M. A. Santos,F. N. Correiatheory and in many other applications. In this chapter we study such parameters in the cases of our surfaces. We will see that the usual planar techniques for computing those invariants are not valid in this case and that new methods must be considered.
14#
發(fā)表于 2025-3-24 00:53:25 | 只看該作者
https://doi.org/10.1007/978-1-4419-8857-7n or of a set of sites. A triangulation is a partition of the domain defined by the input into triangles which meet only at shared sides. Since this kind of meshes are needed in all domains where the ambient space must be discretized, this structure must be studied on surfaces in addition to the plane.
15#
發(fā)表于 2025-3-24 02:44:30 | 只看該作者
Voronoi Diagrams,hull. Without doubt the reason for this assessment is that Voronoi diagrams have applications and are used extensively in a great variety of disciplines (see [Aurenhammer, 1991, Okabe et al., 1992]). So it is possible to say that the Voronoi diagram is an interdisciplinary concept, and, in fact, it has independent roots in many fields.
16#
發(fā)表于 2025-3-24 07:38:04 | 只看該作者
17#
發(fā)表于 2025-3-24 13:57:15 | 只看該作者
18#
發(fā)表于 2025-3-24 17:52:26 | 只看該作者
Euclidean Position,ively think that planar methods will be valid in this Situation. This intuition has been used on several occasions by many authors, but sometimes it is not clear what ‘very close to each other’ means. In this chapter we will try to clarify this concept, introducing what we call Euclidean position, i
19#
發(fā)表于 2025-3-24 22:40:02 | 只看該作者
20#
發(fā)表于 2025-3-25 02:28:36 | 只看該作者
Voronoi Diagrams,hull. Without doubt the reason for this assessment is that Voronoi diagrams have applications and are used extensively in a great variety of disciplines (see [Aurenhammer, 1991, Okabe et al., 1992]). So it is possible to say that the Voronoi diagram is an interdisciplinary concept, and, in fact, it
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平和县| 西乌| 饶阳县| 乐清市| 措美县| 张掖市| 景谷| 利川市| 武城县| 永嘉县| 当阳市| 南城县| 安泽县| 同心县| 上饶市| 靖西县| 龙海市| 凯里市| 东海县| 礼泉县| 扶余县| 镇康县| 洮南市| 蒙阴县| 万源市| 丽水市| 兴义市| 大城县| 汤阴县| 高清| 岢岚县| 南阳市| 共和县| 武川县| 岳西县| 梨树县| 福清市| 南康市| 盐源县| 洛浦县| 正阳县|