找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Geometry; XIV Spanish Meeting Alberto Márquez,Pedro Ramos,Jorge Urrutia Book 2012 Springer-Verlag Berlin Heidelberg 2012 com

[復(fù)制鏈接]
樓主: 母牛膽小鬼
31#
發(fā)表于 2025-3-26 22:42:16 | 只看該作者
Stochastic Dominance and Diversification,Given two combinatorial triangulations, how many edge flips are necessary and sufficient to convert one into the other? This question has occupied researchers for over 75 years. We provide a comprehensive survey, including full proofs, of the various attempts to answer it.
32#
發(fā)表于 2025-3-27 04:09:04 | 只看該作者
Stochastic Dominance Option PricingThe twisted graph . is a complete topological graph with . vertices .,.,…,. in which two edges . (.?
33#
發(fā)表于 2025-3-27 07:01:36 | 只看該作者
https://doi.org/10.1007/978-3-642-95379-8We introduce a simple algorithm for constructing a spiral serpentine polygonization of a set . of .?≥?3 points in the plane. Our algorithm simultaneously gives a triangulation of the constructed polygon at no extra cost, runs in .(. log.) time, and uses .(.) space.
34#
發(fā)表于 2025-3-27 10:31:15 | 只看該作者
Vadim S. Anishchenko,Alexander B. NeimanWe present a new method for unfolding a convex polyhedron into one piece without overlap, based on shortest paths to a convex curve on the polyhedron. Our “sun unfoldings” encompass source unfolding from a point, source unfolding from an open geodesic curve, and a variant of a recent method of Itoh, O’Rourke, and V?lcu.
35#
發(fā)表于 2025-3-27 14:37:42 | 只看該作者
https://doi.org/10.1007/BFb0105592This paper describes algorithms for computing non-planar drawings of planar graphs in subquadratic area such that: (i) edge crossings are allowed only if they create large angles; (ii) the maximum number of bends per edge is bounded by a (small) constant.
36#
發(fā)表于 2025-3-27 20:58:33 | 只看該作者
37#
發(fā)表于 2025-3-27 23:31:46 | 只看該作者
Notes on the Twisted Graph,The twisted graph . is a complete topological graph with . vertices .,.,…,. in which two edges . (.?
38#
發(fā)表于 2025-3-28 04:04:29 | 只看該作者
Spiral Serpentine Polygonization of a Planar Point Set,We introduce a simple algorithm for constructing a spiral serpentine polygonization of a set . of .?≥?3 points in the plane. Our algorithm simultaneously gives a triangulation of the constructed polygon at no extra cost, runs in .(. log.) time, and uses .(.) space.
39#
發(fā)表于 2025-3-28 06:52:16 | 只看該作者
40#
發(fā)表于 2025-3-28 13:44:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 07:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宿州市| 松原市| 武夷山市| 安国市| 九龙城区| 敖汉旗| 唐海县| 正蓝旗| 长泰县| 连州市| 郎溪县| 乌拉特后旗| 石首市| 颍上县| 晋州市| 双城市| 牙克石市| 乐业县| 中西区| 郴州市| 舟曲县| 吴桥县| 利川市| 墨江| 吉木萨尔县| 三门县| 峨眉山市| 个旧市| 威信县| 安康市| 辰溪县| 蓝田县| 滦南县| 鸡泽县| 庄浪县| 邢台县| 宁强县| 新营市| 噶尔县| 南丹县| 鲜城|