找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Geometry; XIV Spanish Meeting Alberto Márquez,Pedro Ramos,Jorge Urrutia Book 2012 Springer-Verlag Berlin Heidelberg 2012 com

[復(fù)制鏈接]
樓主: 母牛膽小鬼
31#
發(fā)表于 2025-3-26 22:42:16 | 只看該作者
Stochastic Dominance and Diversification,Given two combinatorial triangulations, how many edge flips are necessary and sufficient to convert one into the other? This question has occupied researchers for over 75 years. We provide a comprehensive survey, including full proofs, of the various attempts to answer it.
32#
發(fā)表于 2025-3-27 04:09:04 | 只看該作者
Stochastic Dominance Option PricingThe twisted graph . is a complete topological graph with . vertices .,.,…,. in which two edges . (.?
33#
發(fā)表于 2025-3-27 07:01:36 | 只看該作者
https://doi.org/10.1007/978-3-642-95379-8We introduce a simple algorithm for constructing a spiral serpentine polygonization of a set . of .?≥?3 points in the plane. Our algorithm simultaneously gives a triangulation of the constructed polygon at no extra cost, runs in .(. log.) time, and uses .(.) space.
34#
發(fā)表于 2025-3-27 10:31:15 | 只看該作者
Vadim S. Anishchenko,Alexander B. NeimanWe present a new method for unfolding a convex polyhedron into one piece without overlap, based on shortest paths to a convex curve on the polyhedron. Our “sun unfoldings” encompass source unfolding from a point, source unfolding from an open geodesic curve, and a variant of a recent method of Itoh, O’Rourke, and V?lcu.
35#
發(fā)表于 2025-3-27 14:37:42 | 只看該作者
https://doi.org/10.1007/BFb0105592This paper describes algorithms for computing non-planar drawings of planar graphs in subquadratic area such that: (i) edge crossings are allowed only if they create large angles; (ii) the maximum number of bends per edge is bounded by a (small) constant.
36#
發(fā)表于 2025-3-27 20:58:33 | 只看該作者
37#
發(fā)表于 2025-3-27 23:31:46 | 只看該作者
Notes on the Twisted Graph,The twisted graph . is a complete topological graph with . vertices .,.,…,. in which two edges . (.?
38#
發(fā)表于 2025-3-28 04:04:29 | 只看該作者
Spiral Serpentine Polygonization of a Planar Point Set,We introduce a simple algorithm for constructing a spiral serpentine polygonization of a set . of .?≥?3 points in the plane. Our algorithm simultaneously gives a triangulation of the constructed polygon at no extra cost, runs in .(. log.) time, and uses .(.) space.
39#
發(fā)表于 2025-3-28 06:52:16 | 只看該作者
40#
發(fā)表于 2025-3-28 13:44:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 09:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
无锡市| 鹤庆县| 锡林郭勒盟| 海伦市| 淮滨县| 湘西| 徐汇区| 白水县| 临潭县| 陆川县| 博兴县| 自贡市| 鞍山市| 察哈| 方城县| 南部县| 泰来县| 吴江市| 昌江| 白河县| 秦皇岛市| 海丰县| 海宁市| 晋城| 客服| 拜泉县| 墨脱县| 镇江市| 安多县| 荥阳市| 南宁市| 龙南县| 大埔县| 阿图什市| 东乌| 延川县| 镇康县| 岳池县| 洛宁县| 宜宾市| 宜黄县|