找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Fluid Dynamics 2010; Proceedings of the S Alexander Kuzmin Conference proceedings 2011 Springer-Verlag Berlin Heidelberg 2011

[復制鏈接]
樓主: ACE313
41#
發(fā)表于 2025-3-28 16:09:30 | 只看該作者
42#
發(fā)表于 2025-3-28 22:07:25 | 只看該作者
43#
發(fā)表于 2025-3-29 00:46:09 | 只看該作者
An Example of the Singular Coupling Limit,lations for description of the dispersed phase while the properties of the fluid remain calculated with the Eulerian approach. For that purpose we introduce a relaxation model in order to stabilize approximations of the Eulerian part of the particle phase. We present an analytic validation and numer
44#
發(fā)表于 2025-3-29 03:15:26 | 只看該作者
45#
發(fā)表于 2025-3-29 11:19:05 | 只看該作者
Franco Fagnola,Rolando Rebolledoalance equation (PBE) can be used to describe the evolution of the dispersed phase. Nevertheless, this is computationally demanding. The present work extends previous work by applying a spectral element method of a least squares type to solve this equation when studying three-dimensional transient m
46#
發(fā)表于 2025-3-29 12:47:01 | 只看該作者
47#
發(fā)表于 2025-3-29 15:46:26 | 只看該作者
Stochastic Analysis and Related TopicsWe compare the reformulated scheme of this chapter with the original Osher scheme on a series of test problems for the one-dimensional Euler equations for ideal gases, concluding that the present solver is simpler, more robust, more accurate and can be applied to any hyperbolic system.
48#
發(fā)表于 2025-3-29 21:11:31 | 只看該作者
49#
發(fā)表于 2025-3-30 02:53:55 | 只看該作者
L. Bertini,N. Cancrini,G. Jona-Lasinioreconstruction is exposed briefly and its applications to the Euler equations are presented through several test cases to assess its accuracy and stability. Comparisons with classical methods such as MUSCL show the superiority of SVM. The SVM method arises as a high-order accurate scheme, geometrically flexible and computationally efficient.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 12:14
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
廊坊市| 安龙县| 阳朔县| 时尚| 丹江口市| 昌宁县| 新巴尔虎左旗| 临城县| 乃东县| 翁源县| 迭部县| 孝义市| 安福县| 贵阳市| 顺昌县| 津南区| 博兴县| 离岛区| 邢台市| 西峡县| 海安县| 安平县| 阿瓦提县| 神木县| 潜江市| 沛县| 屏东县| 通山县| 奈曼旗| 乐安县| 永寿县| 嘉义市| 博爱县| 西充县| 三原县| 河池市| 苍梧县| 镇远县| 潮州市| 邵阳市| 毕节市|