找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Epigenomics and Epitranscriptomics; Pedro H. Oliveira Book 2023 The Editor(s) (if applicable) and The Author(s), under exclu

[復(fù)制鏈接]
樓主: Abridge
21#
發(fā)表于 2025-3-25 06:08:26 | 只看該作者
https://doi.org/10.1007/978-3-642-93418-6utional layers to achieve simultaneously a large sequence context while interpreting the DNA sequence at single base pair resolution. Using transfer learning of convolutional weights trained to predict a compendium of chromatin features across cell types allows deepC to predict cell type-specific ch
22#
發(fā)表于 2025-3-25 07:32:11 | 只看該作者
23#
發(fā)表于 2025-3-25 14:07:48 | 只看該作者
24#
發(fā)表于 2025-3-25 17:52:44 | 只看該作者
https://doi.org/10.1007/978-3-658-28778-8cts activity for each gene, which can be used to integrate with transcriptome data from the same cell types. Here, we provide an overview of our method and detailed guidance on how to use it for the integration of methylome and transcriptome data.
25#
發(fā)表于 2025-3-25 22:52:20 | 只看該作者
Walter Bien,Angela Hartl,Markus Teubnerse of methylation information from neighboring sites to recover partially observed methylation patterns. Our method and software are proven to be faster and more accurate among all evaluated. Ultimately, our method allows for a more streamlined monitoring of epigenetic changes within cellular populations and their putative role in disease.
26#
發(fā)表于 2025-3-26 02:23:16 | 只看該作者
Integrating Single-Cell Methylome and Transcriptome Data with MAPLE,cts activity for each gene, which can be used to integrate with transcriptome data from the same cell types. Here, we provide an overview of our method and detailed guidance on how to use it for the integration of methylome and transcriptome data.
27#
發(fā)表于 2025-3-26 08:07:23 | 只看該作者
28#
發(fā)表于 2025-3-26 10:12:47 | 只看該作者
1064-3745 ation advice from the experts.This volume details state-of-the-art computational methods designed to manage, analyze, and generally leverage epigenomic and epitranscriptomic data. Chapters guide readers through fine-mapping and quantification of modifications, visual analytics, imputation methods, s
29#
發(fā)表于 2025-3-26 16:08:33 | 只看該作者
30#
發(fā)表于 2025-3-26 19:04:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜昌市| 秀山| 丰原市| 金华市| 基隆市| 淮南市| 滦南县| 剑川县| 墨江| 西青区| 杭锦旗| 黎城县| 北宁市| 深州市| 广饶县| 黎城县| 韶关市| 津市市| 中阳县| 红桥区| 永安市| 隆德县| 贞丰县| 通山县| 吕梁市| 昌宁县| 芦溪县| 乌海市| 若尔盖县| 樟树市| 法库县| 正蓝旗| 广南县| 垣曲县| 清流县| 达州市| 玛多县| 江西省| 青龙| 天峨县| 罗城|