找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Electrophysiology; Shinji Doi,Junko Inoue,Kunichika Tsumoto Textbook 2010 Springer-Verlag Tokyo 2010 Neuroscience.bioinforma

[復(fù)制鏈接]
樓主: 初生
21#
發(fā)表于 2025-3-25 06:34:05 | 只看該作者
A First Course in “In Silico Medicine”http://image.papertrans.cn/c/image/232269.jpg
22#
發(fā)表于 2025-3-25 08:57:05 | 只看該作者
https://doi.org/10.1007/978-3-663-04265-5systems. The dynamical system theory is related to other areas of mathematics also, for example, to the (analytic or geometric) singular perturbation theory. The singular perturbation theory is very important to analyze and understand the mathematical models in the electrophysiology (see Coombes and
23#
發(fā)表于 2025-3-25 14:10:31 | 只看該作者
https://doi.org/10.1007/978-3-663-13007-9 action potential of squid giant axon, although there are still arguments against it (Connor et al. 1977; Strassberg and DeFelice 1993; Rush and Rinzel 1995; Clay 1998). The HH equations are important not only in that it is one of the most successful mathematical model in quantitatively describing b
24#
發(fā)表于 2025-3-25 19:39:39 | 只看該作者
https://doi.org/10.1007/978-3-663-13007-9odels or abstract models. However, there is no model in which any simplifications or abstractions have not been made. Of course, many features of real neurons are ignored even in the HH equations. All models have their applicability and limits to describe natural phenomena. Therefore, all types of m
25#
發(fā)表于 2025-3-25 22:09:58 | 只看該作者
https://doi.org/10.1007/978-3-663-13006-2e HH equations, however, include various constants or parameters whose values were determined based on physiological experiments, and thus the values inherently possess a certain ambiguity. Also, the “constants” are not really constant but change temporally. Thus, in this chapter, we study the effec
26#
發(fā)表于 2025-3-26 04:06:07 | 只看該作者
27#
發(fā)表于 2025-3-26 07:22:12 | 只看該作者
https://doi.org/10.1007/978-4-431-53862-2Neuroscience; bioinformatics; biological complexity; computational approaches to biological phenomena; d
28#
發(fā)表于 2025-3-26 09:20:07 | 只看該作者
29#
發(fā)表于 2025-3-26 12:50:24 | 只看該作者
30#
發(fā)表于 2025-3-26 19:34:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗田县| 财经| 孟连| 竹北市| 开鲁县| 邯郸县| 治多县| 济宁市| 孝昌县| 时尚| 鹿泉市| 泸水县| 邯郸县| 习水县| 嘉兴市| 昌江| 林州市| 陇南市| 盐津县| 松江区| 白朗县| 张家港市| 合水县| 宁德市| 姚安县| 额尔古纳市| 吉林市| 安乡县| 沽源县| 高邮市| 迭部县| 伊金霍洛旗| 裕民县| 天镇县| 杭锦后旗| 湘潭县| 关岭| 绥化市| 西充县| 九龙城区| 虹口区|