找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Drug Discovery and Design; Mohini Gore,Umesh B. Jagtap Book 2024Latest edition The Editor(s) (if applicable) and The Author(

[復(fù)制鏈接]
樓主: 可入到
41#
發(fā)表于 2025-3-28 15:02:44 | 只看該作者
Book 2024Latest editionps on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols...?.Authoritative and cutting-edge,?.Computational Drug Discovery and Design, Second Edition?.aims?to effectively?utilize computational methodologies in discovery and design of novel drugs..
42#
發(fā)表于 2025-3-28 20:14:21 | 只看該作者
Steuerpolitik — Von der Theorie zur Praxisges in the biological target to improve therapeutic longevity. Here, we present a series of in silico tools that address these applications in small molecule development and describe how they can be embedded within the current pharmaceutical development pipeline.
43#
發(fā)表于 2025-3-29 00:42:13 | 只看該作者
44#
發(fā)表于 2025-3-29 07:07:50 | 只看該作者
Book 2024Latest editiontual screening, lead discovery and optimization, conformational sampling, prediction of pharmacokinetic properties using computer-based methodologies.?Chapters also focus on the application of the latest artificial intelligence technologies for computer aided drug discovery. Written in the format of
45#
發(fā)表于 2025-3-29 11:11:32 | 只看該作者
Antiviral Drug Target Identification and Ligand Discovery,protein receptor, how to screen them, and preparing their analogue library. We make specific reference to free, online, open-source tools and resources which can be applied for antiviral drug discovery studies.
46#
發(fā)表于 2025-3-29 15:11:17 | 只看該作者
47#
發(fā)表于 2025-3-29 18:22:02 | 只看該作者
48#
發(fā)表于 2025-3-29 23:47:34 | 只看該作者
,Mining Chemogenomic Spaces for Prediction of Drug–Target Interactions,g–target interaction prediction, network-centric methods are also evolving. In this chapter, we focus on the process of the drug–target interaction prediction from the perspective of using machine learning algorithms and the various stages involved for developing an accurate predictor.
49#
發(fā)表于 2025-3-30 02:13:55 | 只看該作者
Fremdfinanzierung des Unternehmenskaufs,r-friendly tool for the bioinformatics and cheminformatics communities. This chapter provides a brief overview of the methods, followed by a detailed guide on using the CB-Dock2 server. Additionally, we present a case study that evaluates the performance of protein–ligand blind docking using this tool.
50#
發(fā)表于 2025-3-30 05:48:21 | 只看該作者
https://doi.org/10.1007/978-3-658-11526-5f predicted CARs from intrinsically disordered regions. This protocol chapter describes how to use CARs-DB to search for sequences of interest that might be connected to disease or functional protein–protein interactions. In addition, we provide study cases to illustrate the database’s features to users. The CARs-DB is readily accessible at ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 14:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定南县| 新邵县| 平泉县| 泸定县| 横山县| 桐梓县| 介休市| 茶陵县| 彭泽县| 山东| 海丰县| 望都县| 陇南市| 民和| 大方县| 永城市| 子洲县| 浠水县| 鹤岗市| 正宁县| 郧西县| 渭南市| 射阳县| 新兴县| 柞水县| 聂荣县| 东阿县| 澄迈县| 轮台县| 青冈县| 常德市| 潮安县| 弥勒县| 南皮县| 宁化县| 红安县| 萨嘎县| 宜宾县| 云阳县| 年辖:市辖区| 许昌市|