找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Drug Discovery and Design; Mohini Gore,Umesh B. Jagtap Book 2024Latest edition The Editor(s) (if applicable) and The Author(

[復(fù)制鏈接]
查看: 43545|回復(fù): 61
樓主
發(fā)表于 2025-3-21 16:27:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computational Drug Discovery and Design
編輯Mohini Gore,Umesh B. Jagtap
視頻videohttp://file.papertrans.cn/233/232249/232249.mp4
概述Includes cutting-edge methods and protocols.Provides step-by-step detail essential for reproducible results.Contains key notes and implementation advice from the experts
叢書名稱Methods in Molecular Biology
圖書封面Titlebook: Computational Drug Discovery and Design;  Mohini Gore,Umesh B. Jagtap Book 2024Latest edition The Editor(s) (if applicable) and The Author(
描述.This second edition provides new and updated methods and techniques for identification of drug target, binding sites prediction, high- throughput virtual screening, lead discovery and optimization, conformational sampling, prediction of pharmacokinetic properties using computer-based methodologies.?Chapters also focus on the application of the latest artificial intelligence technologies for computer aided drug discovery. Written in the format of the highly successful?.Methods in Molecular Biology?.series, each chapter includes an introduction to the topic, lists necessary methods, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols...?.Authoritative and cutting-edge,?.Computational Drug Discovery and Design, Second Edition?.aims?to effectively?utilize computational methodologies in discovery and design of novel drugs..
出版日期Book 2024Latest edition
關(guān)鍵詞Computer-aided drug design; Drug target identification; Chemoinformatics; Pharmacokinetics; Lead discove
版次2
doihttps://doi.org/10.1007/978-1-0716-3441-7
isbn_softcover978-1-0716-3443-1
isbn_ebook978-1-0716-3441-7Series ISSN 1064-3745 Series E-ISSN 1940-6029
issn_series 1064-3745
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Busines
The information of publication is updating

書目名稱Computational Drug Discovery and Design影響因子(影響力)




書目名稱Computational Drug Discovery and Design影響因子(影響力)學(xué)科排名




書目名稱Computational Drug Discovery and Design網(wǎng)絡(luò)公開度




書目名稱Computational Drug Discovery and Design網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Drug Discovery and Design被引頻次




書目名稱Computational Drug Discovery and Design被引頻次學(xué)科排名




書目名稱Computational Drug Discovery and Design年度引用




書目名稱Computational Drug Discovery and Design年度引用學(xué)科排名




書目名稱Computational Drug Discovery and Design讀者反饋




書目名稱Computational Drug Discovery and Design讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:05:01 | 只看該作者
https://doi.org/10.1007/978-3-8349-8138-7rucial component of drug discovery and development. VS is a computational method used in drug design to identify potential drugs from enormous libraries of chemicals. This approach makes use of molecular modeling and docking simulations to assess the small molecule’s ability to bind to the desired p
板凳
發(fā)表于 2025-3-22 02:11:54 | 只看該作者
,Unentgeltlicher Unternehmensübergang,, high-throughput virtual ligand screening campaigns aim at discovering computationally new binding molecules or fragments to modulate particular biomolecular interactions or biological activities, related to a disease process. The structure-based virtual ligand screening process primarily relies on
地板
發(fā)表于 2025-3-22 05:01:42 | 只看該作者
https://doi.org/10.1007/978-3-8349-8138-7ructure for a potential viral protein target can be obtained and then highlight some of the main considerations in preparing for the application of receptor-based molecular docking techniques. Thereafter, we discuss the resources to search for potential drug candidates (ligands) against this target
5#
發(fā)表于 2025-3-22 09:00:17 | 只看該作者
Steueroptimierter Unternehmenskaufein–protein interactions can be used to refine docking predictions and to detect macro-characteristics, such as the binding funnel. A new GRAMM web server for protein docking predicts a spectrum of docking poses that characterize the intermolecular energy landscape in protein interaction. A user-fri
6#
發(fā)表于 2025-3-22 15:35:11 | 只看該作者
Fremdfinanzierung des Unternehmenskaufs,l research. Recently, our new blind docking server named CB-Dock2 has been released and is currently being utilized by researchers worldwide. CB-Dock2 outperforms state-of-the-art methods due to its accuracy in binding site identification and binding pose prediction, which are enabled by its knowled
7#
發(fā)表于 2025-3-22 17:21:29 | 只看該作者
8#
發(fā)表于 2025-3-23 00:21:31 | 只看該作者
,Zusammenführung der Aktionsparameter,odeling, regulation of cell proliferation, cell migration, cell differentiation, participation in bacterial/viral infections, and immune response. They can interact with many important biomolecular partners in the extracellular matrix of the cell including small drug molecules. Recently, several GAG
9#
發(fā)表于 2025-3-23 01:30:51 | 只看該作者
Problemstellung und Gang der Untersuchung,ational prediction of drug–target interactions can facilitate in reducing the search space of experimental wet lab-based verifications steps, thus considerably reducing time and other resources dedicated to the drug discovery pipeline. While machine learning-based methods are more widespread for dru
10#
發(fā)表于 2025-3-23 07:54:40 | 只看該作者
https://doi.org/10.1007/978-3-658-11526-5r, most of these resources are built with data from experiments that detect highly hydrophobic stretches located within transiently exposed protein segments. We recently demonstrated that cryptic amyloidogenic regions (CARs) of polar nature have the potential to form amyloid fibrils in vitro. Given
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 01:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
徐闻县| 浙江省| 托克逊县| 太和县| 从江县| 泾源县| 岗巴县| 大宁县| 安康市| 赤壁市| 浑源县| 承德市| 枞阳县| 弥渡县| 汤原县| 河源市| 尼勒克县| 西华县| 高雄市| 临泉县| 诸城市| 德格县| 巴林左旗| 石棉县| 曲水县| 广昌县| 腾冲县| 白沙| 翁牛特旗| 上饶县| 当阳市| 马龙县| 独山县| 长治市| 定日县| 香格里拉县| 交城县| 德安县| 成武县| 云和县| 青浦区|