找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Diffusion MRI and Brain Connectivity; MICCAI Workshops, Na Thomas Schultz,Gemma Nedjati-Gilani,Eleftheria Pan Conference proc

[復(fù)制鏈接]
樓主: KEN
11#
發(fā)表于 2025-3-23 13:30:25 | 只看該作者
Choosing a Tractography Algorithm: On the Effects of Measurement Noise hence for mapping of structural connectivity in the human brain. This renders it crucially important to understand the influence of the various MRI imaging artifacts on the tractography results. In this paper, we focus on the thermal noise that is present in all MRI measurements and compare its eff
12#
發(fā)表于 2025-3-23 15:34:29 | 只看該作者
13#
發(fā)表于 2025-3-23 20:58:19 | 只看該作者
14#
發(fā)表于 2025-3-24 00:48:03 | 只看該作者
15#
發(fā)表于 2025-3-24 03:35:39 | 只看該作者
Groupwise Registration for Correcting Subject Motion and Eddy Current Distortions in Diffusion MRI Uaused by subject motion and eddy current induced geometric distortions. Conventional methods adopt a pairwise registration approach, in which the non-DWI, a.k.a. the b = 0 image, is used as a reference. In this work, a groupwise affine registration framework, using a global dissimilarity metric, is
16#
發(fā)表于 2025-3-24 08:19:09 | 只看該作者
1612-3786 as offers new perspectives and insights on current research challenges for those currently in the field. It will be of interest to researchers and practitioners in computer science, MR physics, and applied mathematics..978-3-319-37684-4978-3-319-02475-2Series ISSN 1612-3786 Series E-ISSN 2197-666X
17#
發(fā)表于 2025-3-24 12:54:26 | 只看該作者
neue betriebswirtschaftliche forschung (nbf)onnectivity and diffusion measures such as FA, is not known. In this work, we use multi-tensor based fiber connectivity to compare data acquired on two subjects with different acceleration factors (. = 1, 2, 3). We investigate and report the reproducibility of fiber bundles and diffusion measures be
18#
發(fā)表于 2025-3-24 18:44:40 | 只看該作者
Schriftenreihe Besteuerung der Unternehmung model that predicts the DWI data from all the diffusion gradients by the underpinning tissue microstructure. As a proof-of-concept, we show that the proposed SRR approach provides more accurate reconstruction results than the current SRR technique with synthetic white matter phantoms.
19#
發(fā)表于 2025-3-24 19:56:39 | 只看該作者
20#
發(fā)表于 2025-3-25 01:35:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邯郸县| 夹江县| 平凉市| 梁山县| 特克斯县| 沿河| 上思县| 福州市| 铁力市| 巴中市| 乐东| 崇明县| 盐源县| 陵水| 宜兰县| 林甸县| 湘潭县| 临颍县| 东海县| 西充县| 和平县| 元谋县| 库车县| 油尖旺区| 榆树市| 福鼎市| 砚山县| 民丰县| 宜城市| 松滋市| 德江县| 色达县| 武冈市| 弥渡县| 玉山县| 广昌县| 肥乡县| 天镇县| 特克斯县| 南汇区| 大厂|