找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Data and Social Networks; 11th International C Thang N. Dinh,Minming Li Conference proceedings 2023 The Editor(s) (if applica

[復制鏈接]
查看: 52558|回復: 57
樓主
發(fā)表于 2025-3-21 19:58:57 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computational Data and Social Networks
副標題11th International C
編輯Thang N. Dinh,Minming Li
視頻videohttp://file.papertrans.cn/233/232224/232224.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computational Data and Social Networks; 11th International C Thang N. Dinh,Minming Li Conference proceedings 2023 The Editor(s) (if applica
描述This book constitutes the refereed proceedings of the 11th International Conference on Computational Data and Social Networks, CSoNet?2022, held as a Virtual Event, during December 5–7, 2022.?The 17 full papers and 7 short papers included in this book were carefully reviewed and selected from 47 submissions. They were organized in topical sections as follows:?Machine Learning and Prediction,?Security and Blockchain,?Fact-checking, Fake News, and Hate Speech,?Network Analysis,?Optimization..
出版日期Conference proceedings 2023
關鍵詞artificial intelligence; computer networks; computer security; correlation analysis; data mining; databas
版次1
doihttps://doi.org/10.1007/978-3-031-26303-3
isbn_softcover978-3-031-26302-6
isbn_ebook978-3-031-26303-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Computational Data and Social Networks影響因子(影響力)




書目名稱Computational Data and Social Networks影響因子(影響力)學科排名




書目名稱Computational Data and Social Networks網絡公開度




書目名稱Computational Data and Social Networks網絡公開度學科排名




書目名稱Computational Data and Social Networks被引頻次




書目名稱Computational Data and Social Networks被引頻次學科排名




書目名稱Computational Data and Social Networks年度引用




書目名稱Computational Data and Social Networks年度引用學科排名




書目名稱Computational Data and Social Networks讀者反饋




書目名稱Computational Data and Social Networks讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:59:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:20:14 | 只看該作者
地板
發(fā)表于 2025-3-22 07:59:55 | 只看該作者
We will fight them on the Beachesstance for group recommendation system. The proposed recommendation model is evaluated on the Jester5k and the MovieLens datasets. The experiment result shows the feasibility of applying the potential energy for the group recommendation problems.
5#
發(fā)表于 2025-3-22 10:07:41 | 只看該作者
Carl Friedrich Graumann,Margret Wintermantelrotocol. An evaluation of the implementation is also conducted. Experimental results show that the cost of transactions decreases depending on the batch size, with the gas cost decreasing by more than 85% for a batch size of 50 transactions. Other evaluation results reveal that deposits incur the most cost and increase faster with the batch size.
6#
發(fā)表于 2025-3-22 14:24:12 | 只看該作者
0302-9743 held as a Virtual Event, during December 5–7, 2022.?The 17 full papers and 7 short papers included in this book were carefully reviewed and selected from 47 submissions. They were organized in topical sections as follows:?Machine Learning and Prediction,?Security and Blockchain,?Fact-checking, Fake
7#
發(fā)表于 2025-3-22 19:03:17 | 只看該作者
8#
發(fā)表于 2025-3-23 00:52:10 | 只看該作者
We will fight them on the Beachesand the word alignment process’s performance, so the proposed strategy can be extended and applied to another low-resource language as long as there is a large bilingual corpus with a rich resource language.
9#
發(fā)表于 2025-3-23 05:11:49 | 只看該作者
https://doi.org/10.1007/978-1-4612-3582-8 Results show that the degree-based attack on the global component is more effective than the classical attack on the entire network. In contrast, the classical Betweenness attack slightly outperforms the Betweenness attack on the global component. However, the latter is more efficient.
10#
發(fā)表于 2025-3-23 05:49:48 | 只看該作者
Incorporating Neighborhood Information and?Sentence Embedding Similarity into?a?Repost Prediction Mothe-art machine learning methods, e.g., Logistic Regression, K-nearest Neighbors, Gaussian Naive Bayes, Deep Neural Network, Random Forest, XGBoosting and Stacking Model to predict repost probability. We evaluate our model on real dataset Weibo to compare the performance with different features and machine learning methods.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 11:22
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阿勒泰市| 鄂托克旗| 顺平县| 阿克| 大化| 印江| 巫溪县| 边坝县| 桂东县| 肃北| 团风县| 新兴县| 若羌县| 镇雄县| 永春县| 杨浦区| 罗江县| 隆尧县| 曲阜市| 万山特区| 铁岭县| 灵川县| 大足县| 拉萨市| 策勒县| 邢台市| 容城县| 泾源县| 泽库县| 西盟| 汾西县| 阳原县| 思茅市| 永登县| 陆良县| 江达县| 潼南县| 崇义县| 鹤山市| 铜川市| 儋州市|