找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Complexity of Solving Equation Systems; Przemys?aw Broniek Book 2015 The Author(s) 2015 four-element 2-valued algebras.gener

[復(fù)制鏈接]
樓主: Hermit
11#
發(fā)表于 2025-3-23 10:11:53 | 只看該作者
12#
發(fā)表于 2025-3-23 17:19:49 | 只看該作者
Stahlgelenkketten und Kettentriebewith the simplification algorithm that transforms each system of equations into a more regular one at the expense of adding some definable constraints. Finally we give computational complexity characterization of SysTermSat over three-element unary algebras that depends on width of a special preorde
13#
發(fā)表于 2025-3-23 20:54:52 | 只看該作者
14#
發(fā)表于 2025-3-23 22:27:47 | 只看該作者
https://doi.org/10.1007/978-3-322-93879-4trongly-2-generated and strongly-3-valued unary algebras. We also classify 2-valued four-element unary algebras. Finally we present a diagram of subclasses of four-element algebras that have computational complexity dichotomies and describe subclasses that need further work.
15#
發(fā)表于 2025-3-24 02:58:55 | 只看該作者
https://doi.org/10.1007/978-3-322-93879-4We present conclusions and open problems raising from studying solving equations over unary algebras. We suggest areas that are most promising for expanding our knowledge.
16#
發(fā)表于 2025-3-24 09:59:28 | 只看該作者
17#
發(fā)表于 2025-3-24 11:47:24 | 只看該作者
Computational Complexity of Solving Equation Systems
18#
發(fā)表于 2025-3-24 15:09:58 | 只看該作者
19#
發(fā)表于 2025-3-24 21:01:33 | 只看該作者
Introduction,nitions and describing the state of the art. We reference the most relevant work in the area and present existing classifications and dichotomies. We also introduce key definitions for the next chapters and give motivation for exploring unary algebras.
20#
發(fā)表于 2025-3-25 02:11:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 00:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彰武县| 大关县| 南充市| 信宜市| 佳木斯市| 沛县| 凉城县| 精河县| 石门县| 洱源县| 永吉县| 南江县| 白沙| 灌南县| 洪泽县| 德昌县| 当阳市| 遂川县| 临海市| 三门县| 探索| 津南区| 武宣县| 武清区| 长沙县| 淅川县| 德清县| 夏河县| 阜阳市| 岳池县| 常山县| 云和县| 莱芜市| 米脂县| 开化县| 剑川县| 都安| 嘉善县| 黎川县| 靖安县| 邹城市|