找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computation, Physics and Beyond; International Worksh Michael J. Dinneen,Bakhadyr Khoussainov,André Nies Book 2012 Springer-Verlag GmbH Ber

[復(fù)制鏈接]
樓主: Cataplexy
51#
發(fā)表于 2025-3-30 11:19:17 | 只看該作者
Fundamentals of Topological Insulators,mputable functions, the existence of universal machines and the invariance under the choice of machine. Recently, the notion of descriptional complexity for finite-state computable functions has been introduced by Calude et al. For the latter theory, one cannot rely on the existence of universal mac
52#
發(fā)表于 2025-3-30 15:08:50 | 只看該作者
https://doi.org/10.1007/978-3-658-11811-2d in classical language, yield major algorithmic randomness notions. He proved several results connecting constructive analysis and randomness that were rediscovered only much later..We give an overview in mostly chronological order. We sketch a proof that Demuth’s notion of Denjoy sets (or reals) c
53#
發(fā)表于 2025-3-30 16:58:12 | 只看該作者
54#
發(fā)表于 2025-3-30 21:15:30 | 只看該作者
Dynamic correlations in quantum magnets, a first order formula on the integers and decides (after a finite number of computations and always with a right answer) whether this formula is true or false. There are also many other limitations of usual computing theory that can be seen as generalisations of G?del incompleteness theorem: for ex
55#
發(fā)表于 2025-3-31 03:59:23 | 只看該作者
Luttinger liquids: the basic concepts,ere a computable bound on the use function is explicitly specified. This elaboration enables us to deal with the notion of asymptotic behavior in a manner like in computational complexity theory, while staying in computability theory. We apply the elaboration to sets which appear in the statistical
56#
發(fā)表于 2025-3-31 05:52:47 | 只看該作者
57#
發(fā)表于 2025-3-31 11:25:52 | 只看該作者
58#
發(fā)表于 2025-3-31 15:31:03 | 只看該作者
59#
發(fā)表于 2025-3-31 19:12:30 | 只看該作者
Computation, Physics and Beyond978-3-642-27654-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
60#
發(fā)表于 2025-3-31 22:52:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 05:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
牡丹江市| 安庆市| 娄烦县| 会宁县| 新蔡县| 商都县| 金湖县| 白山市| 兴海县| 南华县| 泸溪县| 囊谦县| 平顶山市| 清苑县| 博白县| 饶河县| 称多县| 鲜城| 耒阳市| 道真| 沾益县| 长岭县| 安宁市| 仁布县| 托克逊县| 台山市| 汕尾市| 龙山县| 拉萨市| 城口县| 西充县| 仁布县| 漯河市| 东乡县| 同仁县| 五华县| 临江市| 黔南| 广汉市| 海门市| 敖汉旗|