找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computation of Curves and Surfaces; Wolfgang Dahmen,Mariano Gasca,Charles A. Micchelli Book 1990 Kluwer Academic Publishers 1990 3D.Approx

[復(fù)制鏈接]
樓主: otitis-externa
31#
發(fā)表于 2025-3-26 22:04:22 | 只看該作者
32#
發(fā)表于 2025-3-27 04:34:54 | 只看該作者
33#
發(fā)表于 2025-3-27 07:54:36 | 只看該作者
Superconvergence Relations, FESR and Duality of wavelets by multiresolution analysis. This paper summarizes some of the results obtained in [1] on the convergence of stationary subdivision and the structure of the limiting surface and relates them to the above topics.
34#
發(fā)表于 2025-3-27 10:03:38 | 只看該作者
35#
發(fā)表于 2025-3-27 15:05:50 | 只看該作者
The S-matrix: From Heisenberg Till Nowpresentation schemes used within these systems nevertheless differ much with regard to the types of polynomial bases and the maximum polynomial degrees provided. Bernstein-Bézier, Schoenberg-B-Spline, Hermite-Coons type basis functions are frequently used in different systems. Polynomial degrees var
36#
發(fā)表于 2025-3-27 21:42:21 | 只看該作者
37#
發(fā)表于 2025-3-27 23:41:04 | 只看該作者
I. Antoniadis,H. Partouche,T. R. Taylorions of the notion of .-splines to the multi-variable setting in the literature, very little is known at this writing on the structure and theory of all compactly supported smooth piecewise polynomial functions on a preassigned grid partition Δ in ?., . > 1, unless Δ is perfectly regular. While we d
38#
發(fā)表于 2025-3-28 03:21:57 | 只看該作者
I. Antoniadis,H. Partouche,T. R. Taylorpolating or approximating function preserving some convex constraints such as monotonicity or convexity of given data. Monovariate shape preserving interpolation schemes and related algorithms, in particular of the . type, are considered. A short survey of local methods to interpolate surfaces under
39#
發(fā)表于 2025-3-28 07:10:33 | 只看該作者
40#
發(fā)表于 2025-3-28 10:35:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
界首市| 聂荣县| 山阳县| 青州市| 微山县| 内黄县| 武城县| 庄河市| 荔波县| 毕节市| 社旗县| 铁力市| 平南县| 镇坪县| 长沙县| 临江市| 商南县| 昌吉市| 富民县| 纳雍县| 东兴市| 柳河县| 林周县| 巴林右旗| 英超| 肥西县| 江安县| 广宗县| 滁州市| 武宁县| 阿拉善盟| 潢川县| 蒲城县| 洛宁县| 都匀市| 密云县| 天门市| 晋州市| 潍坊市| 江油市| 玉环县|