找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computability and Models; Perspectives East an S. Barry Cooper,Sergey S. Goncharov Book 2003 Kluwer Academic / Plenum Publishers, New York

[復(fù)制鏈接]
樓主: 摩擦
11#
發(fā)表于 2025-3-23 10:15:51 | 只看該作者
Finite End Intervals in Definable Quotients of ,,It will be shown that in a factor lattice of the lattice of c.e. sets under inclusion with respect to a special congruence relation, there exists a finite end interval which is not a Boolean algebra.
12#
發(fā)表于 2025-3-23 15:42:20 | 只看該作者
13#
發(fā)表于 2025-3-23 19:43:41 | 只看該作者
14#
發(fā)表于 2025-3-24 01:47:22 | 只看該作者
Definable Relations on the Computably Enumerable Degrees,We review recent developments in the study of definable relations on the computably enumerable (c.e.) degrees, including the following aspects:
15#
發(fā)表于 2025-3-24 04:42:54 | 只看該作者
16#
發(fā)表于 2025-3-24 10:27:16 | 只看該作者
17#
發(fā)表于 2025-3-24 12:56:26 | 只看該作者
Measuring Crustal Stress: Core-Based Methodsto arithmetical numberings. We prove that principal numberings are complete; completeness is independent of the oracle; the degree of any incomplete numbering is meet-reducible, uniformly complete numberings exist. We completely characterize which finite arithmetical families have a universal number
18#
發(fā)表于 2025-3-24 15:01:12 | 只看該作者
Stress Fractures of the Pelvis and Sacrumbraic properties; the elementary theory of any Rogers semilattice at arithmetical level . ≥ 2 is hereditarily undecidable; the class of all Rogers semilattices of a fixed level . ≥ 2 has an incomplete theory.
19#
發(fā)表于 2025-3-24 19:16:38 | 只看該作者
20#
發(fā)表于 2025-3-25 02:25:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 16:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会同县| 双辽市| 突泉县| 扎兰屯市| 柳林县| 孟连| 洛南县| 得荣县| 阳山县| 蒙阴县| 华池县| 罗江县| 深圳市| 通辽市| 石台县| 囊谦县| 永宁县| 石棉县| 轮台县| 瓮安县| 乐安县| 固阳县| 广东省| 高雄市| 武夷山市| 肃宁县| 榆中县| 乡宁县| 泾阳县| 贵德县| 东方市| 新野县| 喀什市| 濮阳县| 南昌县| 宾川县| 江陵县| 合阳县| 肃宁县| 安新县| 山西省|