找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computability and Complexity in Analysis; 4th International Wo Jens Blanck,Vasco Brattka,Peter Hertling Conference proceedings 2001 Springe

[復(fù)制鏈接]
樓主: GOLF
41#
發(fā)表于 2025-3-28 18:25:29 | 只看該作者
42#
發(fā)表于 2025-3-28 21:34:18 | 只看該作者
Conference proceedings 2001a, September 17{19, 2000. It was the fourth workshop in a successful series of workshops: CCA’95 in Hagen, Germany, CCA’96 in Trier, Germany, and CCA’98 in Brno, Czech Republic. About 40 participants from the countries United Kingdom, Germany, Japan, Italy, Russia, France, Denmark, Greece, and Irela
43#
發(fā)表于 2025-3-29 01:58:51 | 只看該作者
44#
發(fā)表于 2025-3-29 05:20:17 | 只看該作者
0302-9743 systems. A report on this competition has been included in these proceedings. We would like to thank the authors for their contributions and the referees for their careful work, and we hope for978-3-540-42197-9978-3-540-45335-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
45#
發(fā)表于 2025-3-29 07:25:54 | 只看該作者
46#
發(fā)表于 2025-3-29 11:36:59 | 只看該作者
On the Computational Content of the Krasnoselski and Ishikawa Fixed Point Theoremsofs) on the rate of the asymptotic regularity. We first consider the classical case of uniformly convex spaces which goes back to Krasnoselski (1955) and show how a logically motivated modification allows to obtain an improved bound. Moreover, we get a completely elementary proof for a result which
47#
發(fā)表于 2025-3-29 19:13:59 | 只看該作者
48#
發(fā)表于 2025-3-29 23:22:22 | 只看該作者
49#
發(fā)表于 2025-3-30 03:03:24 | 只看該作者
Fausto Rigo PhD,Eugenio Picano PhDofs) on the rate of the asymptotic regularity. We first consider the classical case of uniformly convex spaces which goes back to Krasnoselski (1955) and show how a logically motivated modification allows to obtain an improved bound. Moreover, we get a completely elementary proof for a result which
50#
發(fā)表于 2025-3-30 07:51:47 | 只看該作者
Echocardiographic Signs of Ischemia,the 2-dimensional Euclidean space ?. can be embedded in {0,1} . but not in .. for any character set ., and infinite dimensional spaces like the set of closed/open/compact subsets of .. and the set of continuous functions from ?. to ?. can be embedded in .. but not in .. for any ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
砚山县| 阳原县| 齐河县| 荆门市| 东海县| 武城县| 金塔县| 海淀区| 五家渠市| 金川县| 华安县| 昌江| 华容县| 成都市| 建瓯市| 噶尔县| 鹤岗市| 隆昌县| 延边| 无锡市| 临桂县| 新竹市| 林芝县| 云林县| 东光县| 万安县| 安化县| 泸州市| 陇南市| 灵丘县| 瑞昌市| 罗山县| 澄迈县| 双桥区| 镇原县| 郁南县| 普安县| 商洛市| 德清县| 阿城市| 晋城|