找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms; A Convex Optimizatio Bhabesh Deka,Sumit Datta Book 2019 Springer Nat

[復(fù)制鏈接]
樓主: 審美家
11#
發(fā)表于 2025-3-23 13:14:36 | 只看該作者
12#
發(fā)表于 2025-3-23 16:15:31 | 只看該作者
Introduction to Compressed Sensing Magnetic Resonance Imaging, domain. However, it has a fundamental limitation of being slow or having a long data acquisition time. Due to this, MRI is restricted in some clinical applications. Compressed sensing in MRI demonstrates that it is possible to reconstruct good quality MR images from a fewer k-space measurements. In
13#
發(fā)表于 2025-3-23 19:41:11 | 只看該作者
CS-MRI Reconstruction Problem,mpling theorem. This in return increases the computational effort for reconstruction which may be dealt with some efficient solvers based on convex optimization. To reconstruct MR image from undersampled Fourier data, an underdetermined system of equations is needed to be solved with some additional
14#
發(fā)表于 2025-3-24 02:01:28 | 只看該作者
Fast Algorithms for Compressed Sensing MRI Reconstruction,tion algorithms. The main focus here is to achieve throughputs of clinical compressed sensing MR image reconstruction in terms of quality of reconstruction and computational time. In this chapter, we briefly review some of the recently developed convex optimization-based algorithms for compressed se
15#
發(fā)表于 2025-3-24 06:16:17 | 只看該作者
16#
發(fā)表于 2025-3-24 08:30:52 | 只看該作者
CS-MRI Benchmarks and Current Trends,uccessfully integrated CS-MRI into the existing MRI scanner for clinical studies and within a short span of time it would be also available at a commercial scale. This chapter mainly aims to throw lights upon creating a set of common goals that practical CS-MRI reconstruction algorithms should proje
17#
發(fā)表于 2025-3-24 11:25:05 | 只看該作者
Applications of CS-MRI in Bioinformatics and Neuroinformatics,onance spectroscopy (MRS). It gives valuable information about anatomical structure, the functioning of organs, neuronal activity, and abnormality inside the human body. Although MRI has a number of clinical advantages, it suffers from a fundamental limitation, i.e., slow data acquisition resulting
18#
發(fā)表于 2025-3-24 17:19:08 | 只看該作者
2520-8535 eed forthe CS in MRI, and thereby how it could revolutionize the soft tissue imaging to benefit healthcare technology without making major changes in the existing scanner hardware. It would be particularly usef978-981-13-3597-6Series ISSN 2520-8535 Series E-ISSN 2520-8543
19#
發(fā)表于 2025-3-24 20:59:38 | 只看該作者
20#
發(fā)表于 2025-3-25 02:31:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 05:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
本溪市| 大化| 建宁县| 太原市| 西贡区| 虹口区| 眉山市| 五峰| 会理县| 青州市| 磐石市| 嘉义县| 丰顺县| 安阳县| 景洪市| 博野县| 贵溪市| 赤水市| 新平| 二连浩特市| 张北县| 怀安县| 额尔古纳市| 七台河市| 梁平县| 湟源县| 沈阳市| 铁岭县| 莱州市| 峨眉山市| 通渭县| 库车县| 布尔津县| 兴城市| 卢湾区| 云林县| 汝城县| 金沙县| 富民县| 高州市| 长葛市|